2022届浙江省杭州市江干区实验中学中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为( )
A.38° B.39° C.42° D.48°
2.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
A. B. C. D.
3.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A、B、C、D,则图中的相似三角形有( )
A.4 对 B.5 对 C.6 对 D.7 对
4.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1 B.k<2且k≠1
C.k=2 D.k=2或1
5.计算﹣的结果为( )
A. B. C. D.
6.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
A. B. C. D.
7.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
B.当k>0时,y随x的增大而减小
C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
D.反比例函数的图象关于直线y=﹣x成轴对称
8.下列各数:1.414,,﹣,0,其中是无理数的为( )
A.1.414 B. C.﹣ D.0
9.下列图形中,是轴对称图形的是( )
A. B. C. D.
10.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )
A.8,9 B.8,8.5 C.16,8.5 D.16,10.5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.不等式组的解集是__________.
12.若式子有意义,则x的取值范围是_____.
13.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
14.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.
15.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.
16.抛物线y=2x2+4x﹣2的顶点坐标是_______________.
三、解答题(共8题,共72分)
17.(8分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
18.(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:
(1)该公司“高级技工”有 名;
(2)所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;
(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;
(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
19.(8分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是 三角形;
(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;
(3)如图,△是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.
20.(8分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.
(1)求a和k的值;
(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.
21.(8分)综合与探究
如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
①当点G与点D重合时,求平移距离m的值;
②用含x的式子表示平移距离m,并求m的最大值;
(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.
22.(10分)已知:a是﹣2的相反数,b是﹣2的倒数,则
(1)a=_____,b=_____;
(2)求代数式a2b+ab的值.
23.(12分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.
24.先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.
详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.
故选A.
点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.
2、D
【解析】
A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;
B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;
C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;
D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.
故选D.
3、C
【解析】
由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.
故选C.
4、D
【解析】
当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.
【详解】
当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;
当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,
∴△=(-4)2-4(k-1)×4=0,
解得k=2,
综上可知k的值为1或2,
故选D.
【点睛】
本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.
5、A
【解析】
根据分式的运算法则即可
【详解】
解:原式=,
故选A.
【点睛】
本题主要考查分式的运算。
6、D
【解析】
甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
【详解】
解:由于函数的图像经过点,则有
∴图象过第二、四象限,
∵k=-1,
∴一次函数y=x-1,
∴图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
7、D
【解析】
分析:根据反比例函数的性质一一判断即可;
详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
D.正确,本选项符合题意.
故选D.
点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
8、B
【解析】
试题分析:根据无理数的定义可得是无理数.故答案选B.
考点:无理数的定义.
9、B
【解析】
分析:根据轴对称图形的概念求解.
详解:A、不是轴对称图形,故此选项不合题意;
B、是轴对称图形,故此选项符合题意;
C、不是轴对称图形,故此选项不合题意;
D、不是轴对称图形,故此选项不合题意;
故选B.
点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.
10、A
【解析】
根据中位数、众数的概念分别求得这组数据的中位数、众数.
【详解】
解:众数是一组数据中出现次数最多的数,即8;
而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.
故选A.
【点睛】
考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≥1
【解析】
分析:分别求出两个不等式的解,从而得出不等式组的解集.
详解:解不等式①可得:x≥1, 解不等式②可得:x>-3, ∴不等式组的解为x≥1.
点睛:本题主要考查的是不等式组的解集,属于基础题型.理解不等式的性质是解决这个问题的关键.
12、x≥﹣2且x≠1.
【解析】
由知,
∴,
又∵在分母上,
∴.故答案为且.
13、﹣1
【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
整理得k2+1k=0,解得k1=0,k2=﹣1,
因为k≠0,
所以k的值为﹣1.
故答案为:﹣1.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
14、①②③④
【解析】
①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN;
②由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN,
∴MP=AH=AC=BD;
③∵∠BAN+∠QAD=∠NAQ=45°,
∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ;
④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴.
故答案为:①②③④
点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.
15、-4
【解析】
:由反比例函数解析式可知:系数,
∵S△AOB=2即,∴;
又由双曲线在二、四象限k<0,∴k=-4
16、(﹣1,﹣1)
【解析】
利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.
【详解】
x=-=-1,
把x=-1代入得:y=2-1-2=-1.
则顶点的坐标是(-1,-1).
故答案是:(-1,-1).
【点睛】
本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.
三、解答题(共8题,共72分)
17、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【解析】
设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解分式方程即可,注意验根.
【详解】
解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.1,
经检验,t=2.1是原分式方程的解,且符合题意,
∴1.4t=3.1.
答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.
18、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
【解析】
(1)用总人数50减去其它部门的人数;
(2)根据中位数和众数的定义求解即可;
(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
【详解】
(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
在这些数中1600元出现的次数最多,因而众数是1600元;
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合理些.
(4)(元).
能反映该公司员工的月工资实际水平.
19、(1)等腰(2)(3)存在,
【解析】解:(1)等腰
(2)∵抛物线的“抛物线三角形”是等腰直角三角形,
∴该抛物线的顶点满足.
∴.
(3)存在.
如图,作△与△关于原点中心对称,
则四边形为平行四边形.
当时,平行四边形为矩形.
又∵,
∴△为等边三角形.
作,垂足为.
∴.
∴.
∴.
∴,.
∴,.
设过点三点的抛物线,则
解之,得
∴所求抛物线的表达式为.
20、(1)a=2,k=8(2) =1.
【解析】
分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AE⊥x轴于E,BF⊥x轴于F,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;
(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.
详解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),
∴a=﹣=2,
∴A(﹣1,2),
过A作AE⊥x轴于E,BF⊥⊥x轴于F,
∴AE=2,OE=1,
∵AB∥x轴,
∴BF=2,
∵∠AOB=90°,
∴∠EAO+∠AOE=∠AOE+∠BOF=90°,
∴∠EAO=∠BOF,
∴△AEO∽△OFB,
∴,
∴OF=4,
∴B(4,2),
∴k=4×2=8;
(2)∵直线OA过A(﹣1,2),
∴直线AO的解析式为y=﹣2x,
∵MN∥OA,
∴设直线MN的解析式为y=﹣2x+b,
∴2=﹣2×4+b,
∴b=10,
∴直线MN的解析式为y=﹣2x+10,
∵直线MN交x轴于点M,交y轴于点N,
∴M(5,0),N(0,10),
解得,,
∴C(1,8),
∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.
点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.
21、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
【解析】
(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
【详解】
解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
解得:,
∴抛物线的表达式为y=﹣x3+x+2,
把E(﹣4,y)代入得:y=﹣6,
∴点E的坐标为(﹣4,﹣6).
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
解得:,
∴直线BD的表达式为y=x﹣2.
把x=0代入y=x﹣2得:y=﹣2,
∴D(0,﹣2).
当点G与点D重合时,G的坐标为(0,﹣2).
∵GF∥x轴,
∴F的纵坐标为﹣2.
将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
解得:x=+3或x=﹣+3.
∵﹣4<x<4,
∴点F的坐标为(﹣+3,﹣2).
∴m=FG=﹣3.
②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
∵﹣<0,
∴m有最大值,
当x=0时,m的最大值为4.
(2)当点F在x轴的左侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
解得:x=﹣3或x=4(舍去),
∴点F的坐标为(﹣3,0).
当点F在x轴的右侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
解得:x=﹣3或x=﹣﹣3(舍去),
∴点F的坐标为(﹣3,).
综上所述,点F的坐标为(﹣3,0)或(﹣3,).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
22、2 ﹣
【解析】
试题分析:利用相反数和倒数的定义即可得出.
先因式分解,再代入求出即可.
试题解析:是的相反数,是的倒数,
当时,
点睛:只有符号不同的两个数互为相反数.
乘积为的两个数互为倒数.
23、(1)证明见解析;(2)4.
【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
【详解】
解:(1)在△ABC和△DFE中
,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE;
(2)∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB=4,
∴CB=4+5=1.
【点睛】
考点:全等三角形的判定与性质.
24、x=3时,原式=
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
【详解】
解:原式=÷
=×
=,
解不等式组得,2<x<,
∵x取整数,
∴x=3,
当x=3时,原式=.
【点睛】
本题主要考查分式额化简求值及一元一次不等式组的整数解.
2023-2024学年浙江省杭州市江干区实验中学数学八上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年浙江省杭州市江干区实验中学数学八上期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了下列实数中,是无理数的是,下列说法正确的是等内容,欢迎下载使用。
浙江省杭州市江干区笕桥实验中学2022-2023学年八年级下学期期中数学试题: 这是一份浙江省杭州市江干区笕桥实验中学2022-2023学年八年级下学期期中数学试题,共5页。
2022-2023学年浙江省杭州市江干区笕桥实验中学八年级(下)期中数学试卷(含解析): 这是一份2022-2023学年浙江省杭州市江干区笕桥实验中学八年级(下)期中数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。