|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年安徽省豪州市利辛第二中学中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022年安徽省豪州市利辛第二中学中考数学模拟预测题含解析01
    2022年安徽省豪州市利辛第二中学中考数学模拟预测题含解析02
    2022年安徽省豪州市利辛第二中学中考数学模拟预测题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽省豪州市利辛第二中学中考数学模拟预测题含解析

    展开
    这是一份2022年安徽省豪州市利辛第二中学中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,计算,-10-4的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.一次函数的图象不经过( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2.6的相反数为  
    A.-6 B.6 C. D.
    3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是(  )

    A.SAS B.SSS C.AAS D.ASA
    4.计算(﹣5)﹣(﹣3)的结果等于(  )
    A.﹣8 B.8 C.﹣2 D.2
    5.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是(   )

    A. B.12 C.14 D.21
    6.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )

    A. B. C. D.
    7.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )

    A.0.1 B.0.2
    C.0.3 D.0.4
    8.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(  )

    A. B. C. D.
    9.如图所示几何体的主视图是( )

    A. B. C. D.
    10.-10-4的结果是( )
    A.-7 B.7 C.-14 D.13
    二、填空题(共7小题,每小题3分,满分21分)
    11.菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.
    12.关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是_____.
    13.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.
    14.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为_____.

    15.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留

    16.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.
    17.在平面直角坐标系中,已知,A(2,0),C(0,﹣1),若P为线段OA上一动点,则CP+AP的最小值为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:
    商品名称


    进价(元/件)
    40
    90
    售价(元/件)
    60
    120
    设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,
    ①至少要购进多少件甲商品?
    ②若销售完这些商品,则商场可获得的最大利润是多少元?
    19.(5分)阅读
    (1)阅读理解:

    如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
    解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
    中线AD的取值范围是________;
    (2)问题解决:
    如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
    (3)问题拓展:
    如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
    20.(8分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)

    21.(10分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.
    (1)求证:直线CE是⊙O的切线.
    (2)若BC=3,CD=3,求弦AD的长.

    22.(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
    (1)用树状图或列表法求出小王去的概率;
    (2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
    23.(12分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:

    求本次调查的学生人数;
    求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
    若该校共有学生1200人,试估计每周课外阅读时间满足的人数.
    24.(14分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是   事件,“从中任意抽取1个球是黑球”是   事件;从中任意抽取1个球恰好是红球的概率是   ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限
    【详解】
    解:∵,
    ∴函数图象一定经过一、三象限;
    又∵,函数与y轴交于y轴负半轴,
    ∴函数经过一、三、四象限,不经过第二象限
    故选B
    【点睛】
    此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响
    2、A
    【解析】
    根据相反数的定义进行求解.
    【详解】
    1的相反数为:﹣1.故选A.
    【点睛】
    本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.
    3、B
    【解析】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.
    【详解】
    由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',
    故选:B.
    【点睛】
    本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.
    4、C
    【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.
    详解:(-5)-(-3)=-1.
    故选:C.
    点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).
    5、A
    【解析】
    根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.
    【详解】
    解:过点A作AD⊥BC,

    ∵△ABC中,cosB=,sinC=,AC=5,
    ∴cosB==,
    ∴∠B=45°,
    ∵sinC===,
    ∴AD=3,
    ∴CD==4,
    ∴BD=3,
    则△ABC的面积是:×AD×BC=×3×(3+4)=.
    故选:A.
    【点睛】
    此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.
    6、A
    【解析】
    根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
    【详解】
    该几何体的俯视图是:.
    故选A.
    【点睛】
    此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
    7、B
    【解析】
    ∵在5.5~6.5组别的频数是8,总数是40,
    ∴=0.1.
    故选B.
    8、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:

    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    9、C
    【解析】
    从正面看几何体,确定出主视图即可.
    【详解】
    解:几何体的主视图为

    故选C.
    【点睛】
    本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
    10、C
    【解析】
    解:-10-4=-1.故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.
    点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.
    12、k<1
    【解析】
    根据一元二次方程根的判别式结合题意进行分析解答即可.
    【详解】
    ∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,
    ∴△=,
    解得:.
    故答案为:.
    【点睛】
    熟知“在一元二次方程中,若方程有两个不相等的实数根,则△=”是解答本题的关键.
    13、65°或25°
    【解析】
    首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.
    【详解】
    解:分情况讨论:(1)∵AE平分∠BAD,

    ∴∠EAD=∠EAB,
    ∵AD∥BC,
    ∴∠EAD=∠AEB,
    ∴∠BAD=∠AEB,
    ∵∠ABC=50°,
    ∴∠AEB= •(180°-50°)=65°.
    (2)∵AE平分∠BAD,

    ∴∠EAD=∠EAB= ,
    ∵AD∥BC,
    ∴∠AEB=∠DAE=,∠DAB=∠ABC,
    ∵∠ABC=50°,
    ∴∠AEB= ×50°=25°.
    故答案为:65°或25°.
    【点睛】
    本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    14、 .
    【解析】
    当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.
    【详解】
    连接CP、CQ;如图所示:
    ∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短.
    ∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.
    故答案为:.

    【点睛】
    本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.
    15、
    【解析】
    直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.
    【详解】
    由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.
    故答案为6π.
    【点睛】
    本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.
    16、
    【解析】
    分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.
    详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:
    (﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、
    (﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、
    (0,﹣3)、(0,﹣1)、(0,1)、(0,3)、
    (1,﹣3)、(1,﹣1)、(1,0)、(1,3)、
    (3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.
    点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.
    17、
    【解析】
    可以取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,根据勾股定理可得AD=3,证明△APM∽△ADO得,PM=AP.当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
    【详解】
    如图,

    取一点D(0,1),连接AD,作CN⊥AD于点N,PM⊥AD于点M,
    在Rt△AOD中,
    ∵OA=2,OD=1,
    ∴AD==3,
    ∵∠PAM=∠DAO,∠AMP=∠AOD=90°,
    ∴△APM∽△ADO,
    ∴,
    即,
    ∴PM=AP,
    ∴PC+AP=PC+PM,
    ∴当CP⊥AD时,CP+AP=CP+PM的值最小,最小值为CN的长.
    ∵△CND∽△AOD,
    ∴,

    ∴CN=.
    所以CP+AP的最小值为.
    故答案为:.
    【点睛】
    此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.

    三、解答题(共7小题,满分69分)
    18、 (Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.
    【解析】
    (Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.
    【详解】
    (Ⅰ)根据题意得:
    则y与x的函数关系式为.
    (Ⅱ),解得.
    ∴至少要购进20件甲商品.

    ∵,
    ∴y随着x的增大而减小
    ∴当时,有最大值,.
    ∴若售完这些商品,则商场可获得的最大利润是2800元.
    【点睛】
    本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.
    19、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.
    【解析】
    试题分析:(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;
    (2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;
    (3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.
    试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:
    ∵AD是BC边上的中线,
    ∴BD=CD,
    在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,
    ∴△BDE≌△CDA(SAS),
    ∴BE=AC=6,
    在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,
    ∴10﹣6<AE<10+6,即4<AE<16,
    ∴2<AD<8;
    故答案为2<AD<8;
    (2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:
    同(1)得:△BMD≌△CFD(SAS),
    ∴BM=CF,
    ∵DE⊥DF,DM=DF,
    ∴EM=EF,
    在△BME中,由三角形的三边关系得:BE+BM>EM,
    ∴BE+CF>EF;
    (3)解:BE+DF=EF;理由如下:
    延长AB至点N,使BN=DF,连接CN,如图3所示:
    ∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,
    ∴∠NBC=∠D,
    在△NBC和△FDC中,
    BN=DF,∠NBC =∠D,BC=DC,
    ∴△NBC≌△FDC(SAS),
    ∴CN=CF,∠NCB=∠FCD,
    ∵∠BCD=140°,∠ECF=70°,
    ∴∠BCE+∠FCD=70°,
    ∴∠ECN=70°=∠ECF,
    在△NCE和△FCE中,
    CN=CF,∠ECN=∠ECF,CE=CE,
    ∴△NCE≌△FCE(SAS),
    ∴EN=EF,
    ∵BE+BN=EN,
    ∴BE+DF=EF.

    考点:全等三角形的判定和性质;三角形的三边关系定理.
    20、30.3米.
    【解析】
    试题分析:过点D作DE⊥AB于点E,在Rt△ADE中,求出AE的长,在Rt△DEB中,求出BE的长即可得.
    试题解析:过点D作DE⊥AB于点E,
    在Rt△ADE中,∠AED=90°,tan∠1=, ∠1=30°,
    ∴AE=DE× tan∠1=40×tan30°=40×≈40×1.73×≈23.1
    在Rt△DEB中,∠DEB=90°,tan∠2=, ∠2=10°,
    ∴BE=DE× tan∠2=40×tan10°≈40×0.18=7.2
    ∴AB=AE+BE≈23.1+7.2=30.3米.

    21、(1)证明见解析(2)
    【解析】
    (1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;
    (2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.
    【详解】
    (1)证明:连结OC,如图,

    ∵AD平分∠EAC,
    ∴∠1=∠3,
    ∵OA=OD,
    ∴∠1=∠2,
    ∴∠3=∠2,
    ∴OD∥AE,
    ∵AE⊥DC,
    ∴OD⊥CE,
    ∴CE是⊙O的切线;
    (2)∵∠CDO=∠ADB=90°,
    ∴∠2=∠CDB=∠1,∵∠C=∠C,
    ∴△CDB∽△CAD,
    ∴,
    ∴CD2=CB•CA,
    ∴(3)2=3CA,
    ∴CA=6,
    ∴AB=CA﹣BC=3,,设BD=k,AD=2k,
    在Rt△ADB中,2k2+4k2=5,
    ∴k=,
    ∴AD=.
    22、(1);(2)规则是公平的;
    【解析】
    试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
    (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
    试题解析:(1)画树状图为:

    共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
    所以P(小王)=;
    (2)不公平,理由如下:
    ∵P(小王)=,P(小李)=,≠,
    ∴规则不公平.
    点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    23、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人.
    【解析】
    【分析】根据等级A的人数及所占百分比即可得出调查学生人数;
    先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;
    总人数课外阅读时间满足的百分比即得所求.
    【详解】由条形图知,A级的人数为20人,
    由扇形图知:A级人数占总调查人数的,
    所以:人,
    即本次调查的学生人数为200人;
    由条形图知:C级的人数为60人,
    所以C级所占的百分比为:,
    B级所占的百分比为:,
    B级的人数为人,
    D级的人数为:人,
    B所在扇形的圆心角为:,
    补全条形图如图所示:

    因为C级所占的百分比为,
    所以全校每周课外阅读时间满足的人数为:人,
    答:全校每周课外阅读时间满足的约有360人.
    【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.
    24、(1)必然,不可能;(2);(3)此游戏不公平.
    【解析】
    (1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;
    (2)直接利用概率公式求出答案;
    (3)首先画出树状图,进而利用概率公式求出答案.
    【详解】
    (1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;
    故答案为必然,不可能;
    (2)从中任意抽取1个球恰好是红球的概率是:;
    故答案为;
    (3)如图所示:

    由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:;
    则选择乙的概率为:,
    故此游戏不公平.
    【点睛】
    此题主要考查了游戏公平性,正确列出树状图是解题关键.

    相关试卷

    安徽省豪州市利辛第二中学2023-2024学年八上数学期末复习检测试题含答案: 这是一份安徽省豪州市利辛第二中学2023-2024学年八上数学期末复习检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列说法错误的是等内容,欢迎下载使用。

    安徽省豪州市利辛第二中学2022-2023学年数学七年级第二学期期末教学质量检测试题含答案: 这是一份安徽省豪州市利辛第二中学2022-2023学年数学七年级第二学期期末教学质量检测试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知的三边,,满足,则的面积为等内容,欢迎下载使用。

    安徽省明光市泊岗中学2022年中考数学模拟预测题含解析: 这是一份安徽省明光市泊岗中学2022年中考数学模拟预测题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,方程=的解为,下列运算结果是无理数的是,下列图形中一定是相似形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map