|试卷下载
搜索
    上传资料 赚现金
    2022届郑州二中学中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2022届郑州二中学中考数学全真模拟试题含解析01
    2022届郑州二中学中考数学全真模拟试题含解析02
    2022届郑州二中学中考数学全真模拟试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届郑州二中学中考数学全真模拟试题含解析

    展开
    这是一份2022届郑州二中学中考数学全真模拟试题含解析,共24页。试卷主要包含了《语文课程标准》规定,4的平方根是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
    A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
    2.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为(   )

    A. B. C. D.
    3.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为(  )
    A.26×105 B.2.6×102 C.2.6×106 D.260×104
    4.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是(  )

    A.60cm2 B.50cm2 C.40cm2 D.30cm2
    5.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是(  )
    A. B. C. D.
    6.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为(  )

    A.62° B.38° C.28° D.26°
    7.4的平方根是(  )
    A.2 B.±2 C.8 D.±8
    8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx+c时,x的取值范围是-4
    A.①② B.①③ C.①③④ D.②③④
    9.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    10.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为(  )

    A.12m B.13.5m C.15m D.16.5m
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算:(π﹣3)0+(﹣)﹣1=_____.
    12.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为____.

    13.若4a+3b=1,则8a+6b-3的值为______.
    14.在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_____________.
    15.因式分解:3a3﹣3a=_____.
    16.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么 的值等于________.(结果保留两位小数)

    三、解答题(共8题,共72分)
    17.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
    车型
    目的地
    A村(元/辆)
    B村(元/辆)
    大货车
    800
    900
    小货车
    400
    600
    (1)求这15辆车中大小货车各多少辆?
    (2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
    (3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
    18.(8分)某海域有A、B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求:
    (1)∠C=   °;
    (2)此时刻船与B港口之间的距离CB的长(结果保留根号).

    19.(8分)如图,已知:,,,求证:.

    20.(8分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.
    求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长
    21.(8分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
    (1)求k的值.
    (2)判断点A是否可与点B重合;
    (3)若抛物线与BC有交点,求b的取值范围.

    22.(10分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.

    23.(12分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
    24.观察猜想:
    在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是   ,位置关系是   .探究证明:
    在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:
    如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    解:在这一组数据中6是出现次数最多的,故众数是6;
    而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
    平均数是:(3+4+5+6+6)÷5=4.8,
    故选C.
    【点睛】
    本题考查众数;算术平均数;中位数.
    2、A
    【解析】
    试题解析:连接OE,OF,ON,OG,

    在矩形ABCD中,
    ∵∠A=∠B=90°,CD=AB=4,
    ∵AD,AB,BC分别与⊙O相切于E,F,G三点,
    ∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
    ∴四边形AFOE,FBGO是正方形,
    ∴AF=BF=AE=BG=2,
    ∴DE=3,
    ∵DM是⊙O的切线,
    ∴DN=DE=3,MN=MG,
    ∴CM=5-2-MN=3-MN,
    在Rt△DMC中,DM2=CD2+CM2,
    ∴(3+NM)2=(3-NM)2+42,
    ∴NM=,
    ∴DM=3+=,
    故选B.
    考点:1.切线的性质;3.矩形的性质.
    3、C
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    260万=2600000=.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    4、D
    【解析】
    标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.
    【详解】
    解:如图,∵正方形的边DE∥CF,
    ∴∠B=∠AED,
    ∵∠ADE=∠EFB=90°,
    ∴△ADE∽△EFB,
    ∴,
    ∴,
    设BF=3a,则EF=5a,
    ∴BC=3a+5a=8a,
    AC=8a×=a,
    在Rt△ABC中,AC1+BC1=AB1,
    即(a)1+(8a)1=(10+6)1,
    解得a1=,
    红、蓝两张纸片的面积之和=×a×8a-(5a)1,
    =a1-15a1,
    =a1,
    =×,
    =30cm1.
    故选D.
    【点睛】
    本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.
    5、C
    【解析】
    试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.
    6、C
    【解析】
    分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
    详解:∵AB=AC,AD⊥BC,∴BD=CD.
    又∵∠BAC=90°,∴BD=AD=CD.
    又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
    ∴∠DBF=∠DAE=90°﹣62°=28°.
    故选C.
    点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
    7、B
    【解析】
    依据平方根的定义求解即可.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选B.
    【点睛】
    本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
    8、B
    【解析】
    结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.
    【详解】
    解:①由图象可知,抛物线开口向下,所以①正确;
     ②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;
     剩下的选项中都有③,所以③是正确的;
     易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.
    故选:B.
    【点睛】
    本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.
    9、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    10、D
    【解析】
    利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.
    【详解】
    ∵∠DEF=∠BCD=90°,∠D=∠D,
    ∴△DEF∽△DCB,
    ∴,
    ∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,
    ∴由勾股定理求得DE=40cm,
    ∴,
    ∴BC=15米,
    ∴AB=AC+BC=1.5+15=16.5(米).
    故答案为16.5m.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-1
    【解析】
    先计算0指数幂和负指数幂,再相减.
    【详解】
    (π﹣3)0+(﹣)﹣1,
    =1﹣3,
    =﹣1,
    故答案是:﹣1.
    【点睛】
    考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a-1=.
    12、
    【解析】
    依据旋转的性质,即可得到,再根据,,即可得出,.最后在中,可得到.
    【详解】
    依题可知,,,,∴,在中,,,,,.
    ∴在中,.
    故答案为:.
    【点睛】
    本题考查了坐标与图形变化,等腰直角三角形的性质以及含30°角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
    13、-1
    【解析】
    先求出8a+6b的值,然后整体代入进行计算即可得解.
    【详解】
    ∵4a+3b=1,
    ∴8a+6b=2,
    8a+6b-3=2-3=-1;
    故答案为:-1.
    【点睛】
    本题考查了代数式求值,整体思想的利用是解题的关键.
    14、9.26×1011
    【解析】试题解析: 9260亿=9.26×1011
    故答案为: 9.26×1011
    点睛: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    15、3a(a+1)(a﹣1).
    【解析】
    首先提取公因式3a,进而利用平方差公式分解因式得出答案.
    【详解】
    解:原式=3a(a2﹣1)
    =3a(a+1)(a﹣1).
    故答案为3a(a+1)(a﹣1).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    16、3.1
    【解析】
    分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.
    详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.
    故答案为3.1.
    点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.

    三、解答题(共8题,共72分)
    17、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
    【解析】
    (1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
    (2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
    (3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
    【详解】
    (1)设大货车用x辆,小货车用y辆,根据题意得:
    解得:.∴大货车用8辆,小货车用7辆.
    (2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
    (3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
    ∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
    最小值为y=100×5+1=9900(元).
    答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
    18、(1)60;(2)
    【解析】
    (1)由平行线的性质以及方向角的定义得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根据方向角的定义得出∠BAC=∠BAE+∠CAE=75°,利用三角形内角和定理求出∠C=60°;
    (2)作AD⊥BC交BC于点D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根据BC=BD+CD即可求解.
    解:(1)如图所示,
    ∵∠EAB=30°,AE∥BF,
    ∴∠FBA=30°,
    又∠FBC=75°,
    ∴∠ABC=45°,
    ∵∠BAC=∠BAE+∠CAE=75°,
    ∴∠C=60°.
    故答案为60;
    (2)如图,作AD⊥BC于D,

    在Rt△ABD中,
    ∵∠ABD=45°,AB=60,
    ∴AD=BD=30.
    在Rt△ACD中,
    ∵∠C=60°,AD=30,
    ∴tanC=,
    ∴CD==10,
    ∴BC=BD+CD=30+10.
    答:该船与B港口之间的距离CB的长为(30+10)海里.
    19、证明见解析;
    【解析】
    根据HL定理证明Rt△ABC≌Rt△DEF,根据全等三角形的性质证明即可.
    【详解】
    ,BE为公共线段,
    ∴CE+BE=BF+BE,

    又,
    在与中,


    ∴AC=DF.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    20、(1)见解析;(2)PE=4.
    【解析】
    (1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;
    (2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.
    【详解】
    解:(1)证明:∵BC是⊙O的直径,

    ∴∠BDC=90°,∴∠BCD+∠B=90°,
    ∵∠ACB=90°,
    ∴∠BCD+∠ACD=90°,
    ∴∠ACD=∠B,
    ∵∠DEC=∠B,
    ∴∠ACD=∠DEC
    (2)证明:连结OE

    ∵E为BD弧的中点.
    ∴∠DCE=∠BCE
    ∵OC=OE
    ∴∠BCE=∠OEC
    ∴∠DCE=∠OEC
    ∴OE∥CD
    ∴△POE∽△PCD,

    ∵PB=BO,DE=2
    ∴PB=BO=OC


    ∴PE=4
    【点睛】
    本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.
    21、(1)12;(2)点A不与点B重合;(3)
    【解析】
    (1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;
    (2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;
    (3)当抛物线经过点B(4,3)时,解得,b= ,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.
    【详解】
    解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数 的图象上,
    ∴k=4(1﹣m)=6×(﹣m),
    ∴解得m=﹣2,
    ∴k=4×[1﹣(﹣2)]=12;
    (2)∵m=﹣2,∴B(4,3),
    ∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,
    ∴A(b,b2).
    若点A与点B重合,则有b=4,且b2=3,显然不成立,
    ∴点A不与点B重合;
    (3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,
    解得,b=,
    显然抛物线右半支经过点B;
    当抛物线经过点C(6,2)时,有2=﹣62+2b×6,
    解得,b=,
    这时仍然是抛物线右半支经过点C,
    ∴b的取值范围为≤b≤.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.
    22、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
    【解析】
    方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
    (2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
    (3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
    NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
    方法二:(1)同方法一.
    (2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
    (3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
    【详解】
    方法一:
    解:
    (1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
    ∴对称轴x=2,
    令y=0,则x2﹣4x=0,
    解得x=0,x=4,
    ∴A(4,0),
    ∵P(1,﹣2),令x=1,则y=﹣3,
    ∴B(1,﹣3),
    ∴C(3,﹣3).
    (2)∵抛物线y=x2﹣2mx(m>1),
    ∴A(2m,0)对称轴x=m,
    ∵P(1,﹣m)
    把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
    ∴B(1,1﹣2m),
    ∴C(2m﹣1,1﹣2m),
    ∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
    PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
    AC2=1+(1﹣2m)2=2﹣4m+4m2,
    ∵△ACP为直角三角形,
    ∴当∠ACP=90°时,PA2=PC2+AC2,
    即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
    解得:m=,m=1(舍去),
    当∠APC=90°时,PA2+PC2=AC2,
    即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
    解得:m=,m=1,和1都不符合m>1,
    故m=.
    (3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
    ∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
    ∴Rt△FNP∽Rt△PBC,
    ∴NP:NF=BC:BP,即=,
    ∴y=2x﹣2﹣m,
    ∴直线PE的解析式为y=2x﹣2﹣m.
    令y=0,则x=1+,
    ∴E(1+m,0),
    ∴PE2=(﹣m)2+(m)2=,
    ∴=5m2﹣10m+5,解得:m=2,m=,
    ∴E(2,0)或E(,0),
    ∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
    令x=0,则y=﹣2﹣m,
    ∴E(0,﹣2﹣m)
    ∴PE2=(﹣2)2+12=5
    ∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
    ∴E(0,﹣4)
    ∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
    ∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
    方法二:
    (1)略.
    (2)∵P(1,﹣m),
    ∴B(1,1﹣2m),
    ∵对称轴x=m,
    ∴C(2m﹣1,1﹣2m),A(2m,0),
    ∵△ACP为直角三角形,
    ∴AC⊥AP,AC⊥CP,AP⊥CP,
    ①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
    ∴,m=﹣1(舍)
    ②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=,
    ③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=(舍)
    (3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
    ∴KCP=,
    △PEC是以P为直角顶点的等腰直角三角形,
    ∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
    ∵P(1,﹣m),
    ∴lPE:y=2x﹣2﹣m,
    ∵点E在坐标轴上,
    ∴①当点E在x轴上时,
    E(,0)且PE=PC,
    ∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴m2=5(m﹣1)2,
    ∴m1=2,m2=,
    ∴E1(2,0),E2(,0),
    ②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
    ∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴1=(m﹣1)2,
    ∴m1=2,m2=0(舍),
    ∴E(0,4),
    综上所述,(2,0)或(,0)或(0,﹣4).
    【点睛】
    本题主要考查二次函数的图象与性质.
    扩展:
    设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
    AB=.
    设平面内直线AB的解析式为:,直线CD的解析式为:
    (1)若AB//CD,则有:;
    (2)若AB⊥CD,则有:.
    23、甲、乙两公司人均捐款分别为80元、100元.
    【解析】
    试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.
    试题解析:
    设甲公司人均捐款x元

    解得:
    经检验,为原方程的根, 80+20=100
    答:甲、乙两公司人均各捐款为80元、100元.
    24、(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3).
    【解析】
    分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.
    (2)证明的方法与(1)类似.
    (3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.
    详解:(1)①∵AB=AC,∠BAC=90°,
    ∴线段AD绕点A逆时针旋转90°得到AE,
    ∴AD=AE,∠BAD=∠CAE,
    ∴△BAD≌△CAE,
    ∴CE=BD,∠ACE=∠B,
    ∴∠BCE=∠BCA+∠ACE=90°,
    ∴BD⊥CE;
    故答案为CE=BD,CE⊥BD.

    (2)(1)中的结论仍然成立.理由如下:
    如图,∵线段AD绕点A逆时针旋转90°得到AE,
    ∴AE=AD,∠DAE=90°,
    ∵AB=AC,∠BAC=90°
    ∴∠CAE=∠BAD,
    ∴△ACE≌△ABD,
    ∴CE=BD,∠ACE=∠B,
    ∴∠BCE=90°,即CE⊥BD,
    ∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.
    (3)如图3,过A作AM⊥BC于M,EN⊥AM于N,

    ∵线段AD绕点A逆时针旋转90°得到AE
    ∴∠DAE=90°,AD=AE,
    ∴∠NAE=∠ADM,
    易证得Rt△AMD≌Rt△ENA,
    ∴NE=AM,
    ∵∠ACB=45°,
    ∴△AMC为等腰直角三角形,
    ∴AM=MC,
    ∴MC=NE,
    ∵AM⊥BC,EN⊥AM,
    ∴NE∥MC,
    ∴四边形MCEN为平行四边形,
    ∵∠AMC=90°,
    ∴四边形MCEN为矩形,
    ∴∠DCF=90°,
    ∴Rt△AMD∽Rt△DCF,
    ∴,
    设DC=x,
    ∵∠ACB=45°,AC=,
    ∴AM=CM=1,MD=1-x,
    ∴,
    ∴CF=-x2+x=-(x-)2+,
    ∴当x=时有最大值,CF最大值为.
    点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.

    相关试卷

    2023届南通市启秀中学中考数学全真模拟试题含解析: 这是一份2023届南通市启秀中学中考数学全真模拟试题含解析,共16页。

    2022年湖北恩施崔坝中学中考数学全真模拟试题含解析: 这是一份2022年湖北恩施崔坝中学中考数学全真模拟试题含解析,共20页。试卷主要包含了答题时请按要求用笔,按一定规律排列的一列数依次为等内容,欢迎下载使用。

    2022届浙江省温州中学中考数学全真模拟试题含解析: 这是一份2022届浙江省温州中学中考数学全真模拟试题含解析,共23页。试卷主要包含了cs30°=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map