2021学年第二十一章 一元二次方程21.2 解一元二次方程21.2.4 一元二次方程的根与系数的关系随堂练习题
展开
这是一份2021学年第二十一章 一元二次方程21.2 解一元二次方程21.2.4 一元二次方程的根与系数的关系随堂练习题,共7页。
第二十一章 一元二次方程*21.2.4 一元二次方程的根与系数的关系 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0【答案】AC、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1,x2异号,结论D错误.故选A.【名师点睛】本题考查了根的判别式以及根与系数的关系,牢记“当>0时,方程有两个不相等的实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是A.2 B.﹣1 C.2或﹣1 D.不存在【答案】A∴x1+x2=,x1x2=,∵=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2,故选A.【名师点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式>0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A.﹣2 B.1 C.2 D.0【答案】D【解析】∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选D.【名师点睛】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.4.已知关于x的一元二次方程kx2−2x+1=0有实数根,则k的取值范围是A.k<1 B.k≤1 C.k≤1且k≠0 D.k<1且k≠0【答案】C【名师点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.[来源:学&科&网]5.已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0的两个不相等的实数根,且满足= −1,则m的值是A.3或 −1 B.3 C.−1 D.−3 或 1【答案】B【解析】∵α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根;∴α+β=−2m−3,α⋅β=m2,∴===−1,∴m2−2m−3=0,解得m=3或m=−1.∵一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根,∴=(2m+3)2−4×1×m2=12m+9>0,∴m>−,∴m=−1不合题意舍去,∴m=3.【名师点睛】此题考查了一元二次方程根与系数的关系、根的判别式等知识点,根据根与系数的关系结合=1,找出关于m的方程是解题的关键.[来源:学_科_网Z_X_X_K]6.关于x的方程的两根互为相反数,则k的值是A.2 B.±2 C.−2 D.−3【答案】C[来源:Zxxk.Com]【名师点睛】本题主要考查一元二次方程根与系数的关系,熟记公式 是解决本题的关键.二、填空题:请将答案填在题中横线上.7.一元二次方程的两根为 ,则的值为__________.【答案】2【解析】由题意得:+2=0,=2,∴=−2,=4,∴=−2+4=2,故答案为:2. 【名师点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.8.设、是一元二次方程的两个根,且,则__________,__________.【答案】,【名师点睛】本题考查了根与系数的关系:若、是一元二次方程ax2+bx+c=0(a≠0)的两根时,=−,=.9.方程的两个根为、,则的值等于__________.【答案】3【解析】根据题意得,,所以===3.故答案为3.【名师点睛】本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.来源:学科网]10.若是一元二次方程 x²−6x−2=0的两个实数根,则=__________.【答案】6【解析】∵x1+x2=﹣,∴x1+x2=6.故答案为:6.【名师点睛】本题考查了一元二次方程的根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=﹣,x1•x2=.11.已知方程x2−mx−3m=0的两根是x1、x2,若x1+x2=1,则 x1x2=__________.【答案】−3【解析】∵, ∴.【名师点睛】本题主要考查的是一元二次方程的根与系数的关系,属于基础题型.理解根与系数的关系的公式是解决这个问题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤. 12.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)−2.[来源:学_科_网]【名师点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22−x1x2=3p2+1,求出p值.13.已知关于x的一元二次方程x2+(m−1)x−2m2+m=0(m为实数)有两个实数根x1,x2.(1)当m为何值时,方程有两个不相等的实数根;(2)若x12+x22=2,求m的值.【答案】(1);(2),.【名师点睛】本题是常见的根的判别式、根与系数关系的结合试题.把求未知系数m的问题转化为解方程问题是解决本题的关键.
相关试卷
这是一份中考数学总复习资源 21.2.4一元二次方程的根与系数的关系同步检测,共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.4 一元二次方程的根与系数的关系精品随堂练习题,文件包含人教版数学九年级上册2124《一元二次方程的根与系数的关系》作业解析版docx、人教版数学九年级上册2124《一元二次方程的根与系数的关系》作业原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份初中数学人教版九年级上册21.2.4 一元二次方程的根与系数的关系同步练习题,共3页。