终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年北京市北京昌平临川育人校中考冲刺卷数学试题含解析

    立即下载
    加入资料篮
    2022年北京市北京昌平临川育人校中考冲刺卷数学试题含解析第1页
    2022年北京市北京昌平临川育人校中考冲刺卷数学试题含解析第2页
    2022年北京市北京昌平临川育人校中考冲刺卷数学试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年北京市北京昌平临川育人校中考冲刺卷数学试题含解析

    展开

    这是一份2022年北京市北京昌平临川育人校中考冲刺卷数学试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,﹣的绝对值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知方程的两个解分别为、,则的值为()
    A. B. C.7 D.3
    2. “a是实数,”这一事件是( )
    A.不可能事件 B.不确定事件 C.随机事件 D.必然事件
    3.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )

    A.3.5 B.3 C.4 D.4.5
    4.下列计算正确的是(  )
    A.a2•a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a10
    5.﹣的绝对值是(  )
    A.﹣ B. C.﹣2 D.2
    6.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为,则弦CD的长为( )

    A. B.3cm C. D.9cm
    7.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(( )
    A. B. C. D.
    8.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为(  )

    A.99° B.109° C.119° D.129°
    9.下列函数中,y关于x的二次函数是( )
    A.y=ax2+bx+c B.y=x(x﹣1)
    C.y= D.y=(x﹣1)2﹣x2
    10.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )

    A. B. C. D.
    11.下列说法中不正确的是(  )
    A.全等三角形的周长相等 B.全等三角形的面积相等
    C.全等三角形能重合 D.全等三角形一定是等边三角形
    12.cos30°的相反数是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.

    14.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为
    15.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.

    16.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.
    17.如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于__________.
    18.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
    (2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
    (3)登山多长时间时,甲、乙两人距地面的高度差为50米?

    20.(6分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.

    (1)由定义知,取AB中点N,连结MN,MN与AB的关系是_____.
    (2)抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.
    (3)抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ①求抛物线的解析式;
    ②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
    21.(6分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.

    22.(8分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
    (1)求抛物线的函数表达式;
    (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
    ①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
    ②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

    23.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?
    24.(10分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
    求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
    25.(10分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
    (1)直接写出AB所在直线的解析式、点C的坐标、a的值;
    (2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
    (3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.

    26.(12分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,

    27.(12分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
    (1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
    (2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.
    【详解】
    解:∵方程x2−5x+2=0的两个解分别为x1,x2,
    ∴x1+x2=5,x1•x2=2,
    ∴x1+x2−x1•x2=5−2=1.
    故选D.
    【点睛】
    本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.
    2、D
    【解析】
    是实数,||一定大于等于0,是必然事件,故选D.
    3、B
    【解析】
    解:∵∠ACB=90°,∠ABC=60°,
    ∴∠A=10°,
    ∵BD平分∠ABC,
    ∴∠ABD=∠ABC=10°,
    ∴∠A=∠ABD,
    ∴BD=AD=6,
    ∵在Rt△BCD中,P点是BD的中点,
    ∴CP=BD=1.
    故选B.
    4、B
    【解析】
    根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.
    【详解】
    A、a2•a3=a5,错误;
    B、(a2)3=a6,正确;
    C、不是同类项,不能合并,错误;
    D、a5+a5=2a5,错误;
    故选B.
    【点睛】
    本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.
    5、B
    【解析】
    根据求绝对值的法则,直接计算即可解答.
    【详解】

    故选:B.
    【点睛】
    本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
    6、B
    【解析】
    解:∵∠CDB=30°,
    ∴∠COB=60°,
    又∵OC=,CD⊥AB于点E,
    ∴,
    解得CE=cm,CD=3cm.
    故选B.
    考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.
    7、B
    【解析】
    解:根据题意可得:
    ∴反比例函数处于二、四象限,则在每个象限内为增函数,
    且当x<0时y>0,当x>0时,y<0,
    ∴<<.
    8、B
    【解析】
    方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.
    【详解】
    解:由题意作图如下

    ∠DAC=46°,∠CBE=63°,
    由平行线的性质可得
    ∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,
    ∴∠ACB=∠ACF+∠BCF=46°+63°=109°,
    故选B.
    【点睛】
    本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.
    9、B
    【解析】
    判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.
    【详解】
    A.当a=0时, y=ax2+bx+c= bx+c,不是二次函数,故不符合题意;
    B. y=x(x﹣1)=x2-x,是二次函数,故符合题意;
    C. 的自变量在分母中,不是二次函数,故不符合题意;
    D. y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;
    故选B.
    【点睛】
    本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.
    10、C
    【解析】
    首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
    【详解】
    根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
    故选:C.
    【点睛】
    此题考查函数的图象,解题关键在于观察图形
    11、D
    【解析】
    根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
    D.错误,全等三角也可能是直角三角,故选项正确.
    故选D.
    【点睛】
    本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
    12、C
    【解析】
    先将特殊角的三角函数值代入求解,再求出其相反数.
    【详解】
    ∵cos30°=,
    ∴cos30°的相反数是,
    故选C.
    【点睛】
    本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3.
    【解析】
    先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,AB=CD,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,
    ∴∠ADE=∠ACD,
    ∴tan∠ACD=tan∠ADE==,
    设AD=4k,CD=3k,则AC=5k,
    ∴5k=5,
    ∴k=1,
    ∴CD=AB=3,
    故答案为3.
    【点睛】
    本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.
    14、
    【解析】
    因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.
    15、64°
    【解析】
    解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.
    点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.
    16、1.738×1
    【解析】
    解:将1738000用科学记数法表示为1.738×1.故答案为1.738×1.
    【点睛】
    本题考查科学记数法—表示较大的数,掌握科学计数法的计数形式,难度不大.
    17、4.
    【解析】
    只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.
    【详解】
    解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.
    故答案为:4
    【点睛】
    本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底+下底)
    18、
    【解析】
    由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
    【详解】
    ∵2x-y=,
    ∴-6x+3y=-.
    ∴原式=--1=-.
    故答案为-.
    【点睛】
    本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)10;1;(2);(3)4分钟、9分钟或3分钟.
    【解析】
    (1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
    (2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
    (3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
    【详解】
    (1)(10-100)÷20=10(米/分钟),
    b=3÷1×2=1.
    故答案为:10;1.
    (2)当0≤x≤2时,y=3x;
    当x≥2时,y=1+10×3(x-2)=1x-1.
    当y=1x-1=10时,x=2.
    ∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.
    (3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
    当10x+100-(1x-1)=50时,解得:x=4;
    当1x-1-(10x+100)=50时,解得:x=9;
    当10-(10x+100)=50时,解得:x=3.
    答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.
    【点睛】
    本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
    20、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
    【解析】
    (1)直接利用等腰直角三角形的性质分析得出答案;
    (2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
    (2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
    ②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
    【详解】
    (1)MN与AB的关系是:MN⊥AB,MN=AB,
    如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
    ∴MN⊥AB,MN=AB,
    故答案为MN⊥AB,MN=AB;

    (2)∵抛物线y=对应的准蝶形必经过B(m,m),
    ∴m=m2,
    解得:m=2或m=0(不合题意舍去),
    当m=2则,2=x2,
    解得:x=±2,
    则AB=2+2=4;
    故答案为2,4;
    (2)①由已知,抛物线对称轴为:y轴,
    ∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
    ∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
    得,9a﹣4a﹣=0,
    解得:a=,
    ∴抛物线的解析式是:y=x2﹣2;
    ②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
    ∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.

    【点睛】
    此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
    21、树高为 5.5 米
    【解析】
    根据两角相等的两个三角形相似,可得 △DEF∽△DCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 AB=AC+BC ,即可求出树高.
    【详解】
    ∵∠DEF=∠DCB=90°,∠D=∠D,
    ∴△DEF∽△DCB
    ∴ ,
    ∵DE=0.4m,EF=0.2m,CD=8m,
    ∴,
    ∴CB=4(m),
    ∴AB=AC+BC=1.5+4=5.5(米)
    答:树高为 5.5 米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.
    22、(1);(2)①,当m=5时,S取最大值;②满足条件的点F共有四个,坐标分别为,,,,
    【解析】
    (1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;
    (2)①先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;
    ②直接写出满足条件的F点的坐标即可,注意不要漏写.
    【详解】
    解:(1)将A、C两点坐标代入抛物线,得 ,
    解得: ,
    ∴抛物线的解析式为y=﹣x2+x+8;
    (2)①∵OA=8,OC=6,
    ∴AC= =10,
    过点Q作QE⊥BC与E点,则sin∠ACB = = =,
    ∴ =,
    ∴QE=(10﹣m),
    ∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;
    ②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,
    ∴当m=5时,S取最大值;
    在抛物线对称轴l上存在点F,使△FDQ为直角三角形,
    ∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,
    D的坐标为(3,8),Q(3,4),
    当∠FDQ=90°时,F1(,8),
    当∠FQD=90°时,则F2(,4),
    当∠DFQ=90°时,设F(,n),
    则FD2+FQ2=DQ2,
    即+(8﹣n)2++(n﹣4)2=16,
    解得:n=6± ,
    ∴F3(,6+),F4(,6﹣),
    满足条件的点F共有四个,坐标分别为
    F1(,8),F2(,4),F3(,6+),F4(,6﹣).

    【点睛】
    本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题.
    23、软件升级后每小时生产1个零件.
    【解析】
    分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.
    详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,
    根据题意得:,
    解得:x=60,
    经检验,x=60是原方程的解,且符合题意,
    ∴(1+)x=1.
    答:软件升级后每小时生产1个零件.
    点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    24、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【解析】
    (1)根据题意得出方程组,求出b、c的值,即可求出答案;
    (2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;
    (3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.
    【详解】
    解:(1)由题意得:,
    解得:,
    ∴抛物线的解析式为y=-x2+2x+2;
    (2)∵由y=-x2+2x+2得:当x=0时,y=2,
    ∴B(0,2),
    由y=-(x-1)2+3得:C(1,3),
    ∵A(3,-1),
    ∴AB=3,BC=,AC=2,
    ∴AB2+BC2=AC2,
    ∴∠ABC=90°,
    ∴△ABC是直角三角形;
    (3)①如图,当点Q在线段AP上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==1,
    ∴PE=AD=1
    ∵由-x2+2x+2=1得:x=1,
    ∴P(1+,1)或(1-,1),
    ②如图,当点Q在PA延长线上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=3AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==3,
    ∴PE=3AD=3
    ∵由-x2+2x+2=-3得:x=1±,
    ∴P(1+,-3),或(1-,-3),
    综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【点睛】
    本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.
    25、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),
    【解析】
    (1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;
    (2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;
    (3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.
    【详解】
    解:(1)设直线AB解析式为y=kx+b,
    把A(﹣4,0),B(0,﹣2)代入得:,
    解得:,
    ∴直线AB的解析式为y=﹣x﹣2,
    根据题意得:点C的坐标为(2,2),
    把C(2,2)代入二次函数解析式得:a=;
    (2)连接BQ,

    则易得PQ∥OB,且PQ=OB,
    ∴四边形PQBO是平行四边形,
    ∴OP=BQ,
    ∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),
    ∵直线AB的解析式为y=﹣x﹣2,
    ∴可设此时点Q的坐标为(t,﹣t﹣2),
    于是,此时点P的坐标为(t,﹣t),
    ∵点P在抛物线y=x2上,
    ∴﹣t=t2,
    解得:t=0或t=﹣1,
    ∴当t=0,点P与点O重合,不合题意,应舍去,
    ∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);
    (3)P(﹣4,8)或(4,8),
    如备用图所示,延长PQ交x轴于点H,

    设此时点P的坐标为(m,m2),
    则tan∠HPO=,
    又,易得tan∠OBC=,
    当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,
    于是,得,
    解得:m=±4,
    所以P(﹣4,8)或(4,8).
    【点睛】
    此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.
    26、(1)见解析;(2)EC=1.
    【解析】
    (1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;
    (2)根据解直角三角形和等边三角形的性质即可得到结论.
    【详解】
    (1)∵AB=AC,
    ∴∠B=∠C,
    ∵FE⊥BC,
    ∴∠F+∠C=90°,∠BDE+∠B=90°,
    ∴∠F=∠BDE,
    而∠BDE=∠FDA,
    ∴∠F=∠FDA,
    ∴AF=AD,
    ∴△ADF是等腰三角形;
    (2)∵DE⊥BC,
    ∴∠DEB=90°,
    ∵∠B=60°,BD=1,
    ∴BE=BD=2,
    ∵AB=AC,
    ∴△ABC是等边三角形,
    ∴BC=AB=AD+BD=6,
    ∴EC=BC﹣BE=1.
    【点睛】
    本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.
    27、 (1);(2).
    【解析】
    (1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;
    (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.
    【详解】
    (1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,
    ∴任取一个球,摸出球上的汉字刚好是“美”的概率P=
    (2)列表如下:






    ----
    (美,丽)
    (光,美)
    (美,明)

    (美,丽)
    ----
    (光,丽)
    (明,丽)

    (美,光)
    (光,丽)
    ----
    (光,明)

    (美,明)
    (明,丽)
    (光,明)
    -------
    根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故
    取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.
    【点睛】
    此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.

    相关试卷

    北京市北京昌平临川育人校2021-2022学年中考数学适应性模拟试题含解析:

    这是一份北京市北京昌平临川育人校2021-2022学年中考数学适应性模拟试题含解析,共24页。试卷主要包含了下列各式中,互为相反数的是等内容,欢迎下载使用。

    北京市昌平区新道临川校2021-2022学年中考数学最后一模试卷含解析:

    这是一份北京市昌平区新道临川校2021-2022学年中考数学最后一模试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,解分式方程﹣3=时,去分母可得,下列运算结果正确的是等内容,欢迎下载使用。

    2021-2022学年北京市昌平临川育人学校中考数学考试模拟冲刺卷含解析:

    这是一份2021-2022学年北京市昌平临川育人学校中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了答题时请按要求用笔,不等式的最小整数解是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map