2022年安徽省宣城中考三模数学试题含解析
展开
这是一份2022年安徽省宣城中考三模数学试题含解析,共18页。试卷主要包含了定义等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列运算正确的是 ( )
A.2+a=3 B. =
C. D.=
2.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为( )
A.﹣1或1 B.1或﹣3 C.﹣1或3 D.3或﹣3
3.抛物线经过第一、三、四象限,则抛物线的顶点必在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列各式中的变形,错误的是(( )
A. B. C. D.
5.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是( )
A. B. C. D.
6.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
A. B. C. D.
7.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )
A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
8.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:
(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧
(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )
A.命题(1)与命题(2)都是真命题
B.命题(1)与命题(2)都是假命题
C.命题(1)是假命题,命题(2)是真命题
D.命题(1)是真命题,命题(2)是假命题
9.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )
A. B. C. D.
10.对于两组数据A,B,如果sA2>sB2,且,则( )
A.这两组数据的波动相同 B.数据B的波动小一些
C.它们的平均水平不相同 D.数据A的波动小一些
二、填空题(共7小题,每小题3分,满分21分)
11.如图,a∥b,∠1=40°,∠2=80°,则∠3= 度.
12.计算:sin30°﹣(﹣3)0=_____.
13.-3的倒数是___________
14.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.
15.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
16.观察以下一列数:3,,,,,…则第20个数是_____.
17.因式分解:x3﹣4x=_____.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图所示,在中,,,求和的度数.
19.(5分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.
(1)分别判断函数y=﹣x+1,y=,y=x2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y=x2﹣b2x,
①若其反向距离为零,求b的值;
②若﹣1≤b≤3,求其反向距离n的取值范围;
(3)若函数y=请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.
20.(8分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.
21.(10分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
22.(10分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
23.(12分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
(1)求抛物线的解析式和顶点坐标;
(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
①若B、C都在抛物线上,求m的值;
②若点C在第四象限,当AC2的值最小时,求m的值.
24.(14分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据整式的混合运算计算得到结果,即可作出判断.
【详解】
A、2与a 不是同类项,不能合并,不符合题意;
B、 =,不符合题意;
C、原式=,不符合题意;
D、=,符合题意,
故选D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
2、A
【解析】
分析:
详解:∵当a≤x≤a+2时,函数有最大值1,∴1=x2-2x-2,解得: ,
即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.
点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.
3、A
【解析】
根据二次函数图象所在的象限大致画出图形,由此即可得出结论.
【详解】
∵二次函数图象只经过第一、三、四象限,∴抛物线的顶点在第一象限.
故选A.
【点睛】
本题考查了二次函数的性质以及二次函数的图象,大致画出函数图象,利用数形结合解决问题是解题的关键.
4、D
【解析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【详解】
A、,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、≠,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
5、D
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
【详解】
∵CD是AB边上的中线,
∴CD=AD,
∴∠A=∠ACD,
∵∠ACB=90°,BC=6,AC=8,
∴tan∠A=,
∴tan∠ACD的值.
故选D.
【点睛】
本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
6、D
【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.
【详解】
根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,
A、,错误;
B、,错误;
C、,错误;
D、,正确;
故选D.
【点睛】
本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.
7、A
【解析】
先将抛物线解析式化为顶点式,左加右减的原则即可.
【详解】
,
当向左平移2个单位长度,再向上平移3个单位长度,得
.
故选A.
【点睛】
本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
8、C
【解析】
试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.
(1)∵P(a,b)在y=上, ∴a和b同号,所以对称轴在y轴左侧,
∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.
(2)∵函数y=的所有“派生函数”为y=ax2+bx, ∴x=0时,y=0,
∴所有“派生函数”为y=ax2+bx经过原点,
∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.
考点:(1)命题与定理;(2)新定义型
9、A
【解析】
试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
∴这个斜坡的水平距离为:=10m,
∴这个斜坡的坡度为:50:10=5:1.
故选A.
点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
10、B
【解析】
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、填空题(共7小题,每小题3分,满分21分)
11、120
【解析】
如图,
∵a∥b,∠2=80°,
∴∠4=∠2=80°(两直线平行,同位角相等)
∴∠3=∠1+∠4=40°+80°=120°.
故答案为120°.
12、-
【解析】
sin30°=,a0=1(a≠0)
【详解】
解:原式=-1
=-
故答案为:-.
【点睛】
本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.
13、
【解析】
乘积为1的两数互为相反数,即a的倒数即为,符号一致
【详解】
∵-3的倒数是
∴答案是
14、
【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.
【详解】
如图,过点B作BD⊥AC于D,设AH=BC=2x,
∵AB=AC,AH⊥BC,
∴BH=CH=BC=x,
根据勾股定理得,AC==x,
S△ABC=BC•AH=AC•BD,
即•2x•2x=•x•BD,
解得BC=x,
所以,sin∠BAC=.
故答案为.
15、
【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
【详解】
设AP,EF交于O点,
∵四边形ABCD为菱形,
∴BC∥AD,AB∥CD.
∵PE∥BC,PF∥CD,
∴PE∥AF,PF∥AE.
∴四边形AEFP是平行四边形.
∴S△POF=S△AOE.
即阴影部分的面积等于△ABC的面积.
∵△ABC的面积等于菱形ABCD的面积的一半,
菱形ABCD的面积=ACBD=5,
∴图中阴影部分的面积为5÷2=.
16、
【解析】
观察已知数列得到一般性规律,写出第20个数即可.
【详解】
解:观察数列得:第n个数为,则第20个数是.
故答案为.
【点睛】
本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.
17、x(x+2)(x﹣2)
【解析】
试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用.
三、解答题(共7小题,满分69分)
18、,.
【解析】
根据等腰三角形的性质即可求出∠B,再根据三角形外角定理即可求出∠C.
【详解】
在中,,
∵,在三角形中,
,
又∵,在三角形中,
∴.
【点睛】
此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.
19、(1)y=−有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.
【解析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
当﹣m=时,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|b2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y=,
∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n=2﹣0=2,
∴m>2或m≤﹣2;
当x<m时,
﹣m=﹣m2﹣3m,
解得,m=0或m=﹣2,
∴n=0﹣(﹣2)=2,
∴﹣2<m≤2,
由上可得,当m>2或m≤﹣2时,n=2,
当﹣2<m≤2时,n=2.
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
20、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).
【解析】
(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;
(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.
【详解】
(1)∵双曲线y=(m≠0)经过点A(﹣,2),
∴m=﹣1.
∴双曲线的表达式为y=﹣.
∵点B(n,﹣1)在双曲线y=﹣上,
∴点B的坐标为(1,﹣1).
∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),
∴,解得
∴直线的表达式为y=﹣2x+1;
(2)当y=﹣2x+1=0时,x=,
∴点C(,0).
设点P的坐标为(x,0),
∵S△ABP=3,A(﹣,2),B(1,﹣1),
∴×3|x﹣|=3,即|x﹣|=2,
解得:x1=﹣,x2=.
∴点P的坐标为(﹣,0)或(,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.
21、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
22、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
23、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
【解析】
分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
详解:
(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
∴﹣4﹣8+c=0,即c=12,
∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
则顶点坐标为(﹣2,16);
(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
∵点B关于原点的对称点为C,
∴C(﹣m,﹣n),
∵C落在抛物线上,
∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
解得:﹣m2+4m+12=m2﹣4m﹣12,
解得:m=2或m=﹣2;
②∵点C(﹣m,﹣n)在第四象限,
∴﹣m>0,﹣n<0,即m<0,n>0,
∵抛物线顶点坐标为(﹣2,16),
∴0<n≤16,
∵点B在抛物线上,
∴﹣m2﹣4m+12=n,
∴m2+4m=﹣n+12,
∵A(2,0),C(﹣m,﹣n),
∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
当n=时,AC2有最小值,
∴﹣m2﹣4m+12=,
解得:m=,
∵m<0,∴m=不合题意,舍去,
则m的值为.
点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
24、详见解析.
【解析】
先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=DC,
∵E、F分别是AB、BC边的中点,
∴AE=ED=CF=DF.
又∠D=∠D,
∴△ADF≌△CDE(SAS).
∴∠DAF=∠DCE,∠AFD=∠CED.
∴∠AEG=∠CFG.
在△AEG和△CFG中
,
∴△AEG≌△CFG(ASA).
∴AG=CG.
【点睛】
本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
相关试卷
这是一份2024年安徽省宣城市中考一模考试数学试题,共6页。
这是一份2023年安徽省宣城市宣州区卫东中学中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省宣城市名校2021-2022学年中考数学模试卷含解析,共20页。试卷主要包含了1﹣的相反数是,下列各式计算正确的是,下列运算结果为正数的是等内容,欢迎下载使用。