还剩17页未读,
继续阅读
2022年福建省泉州市洛江区南片区市级名校中考二模数学试题含解析
展开这是一份2022年福建省泉州市洛江区南片区市级名校中考二模数学试题含解析,共20页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )
A.56×108 B.5.6×108 C.5.6×109 D.0.56×1010
2.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为( )
A.3 B.4 C.5 D.6
3.下列计算正确的是( )
A.2m+3n=5mn B.m2•m3=m6 C.m8÷m6=m2 D.(﹣m)3=m3
4.如图,在中,E为边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的大小为( )
A.20° B.30° C.36° D.40°
5.已知反比例函数下列结论正确的是( )
A.图像经过点(-1,1) B.图像在第一、三象限
C.y 随着 x 的增大而减小 D.当 x > 1时, y < 1
6.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B.
C. D.
7.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
8.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )
A. B.
C. D.
9.下列条件中不能判定三角形全等的是( )
A.两角和其中一角的对边对应相等 B.三条边对应相等
C.两边和它们的夹角对应相等 D.三个角对应相等
10.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为( )
A.1 B.3 C.﹣1 D.2019
二、填空题(共7小题,每小题3分,满分21分)
11.点(a-1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是________.
12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
…
y
…
﹣8
﹣3
0
1
0
…
当y<﹣3时,x的取值范围是_____.
13.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.
14.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点 B,则△OAC 与△BAD 的面积之差 S△OAC﹣S△BAD 为_______.
15.分式方程=1的解为_____
16.一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.
17.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是 .
三、解答题(共7小题,满分69分)
18.(10分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.
(1)求这条抛物线的表达式和顶点P的坐标;
(2)点E在抛物线的对称轴上,且,求点E的坐标;
(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.
19.(5分)小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲产品数(件)
生产乙产品数(件)
所用时间(分钟)
10
10
350
30
20
850
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
20.(8分)解不等式组:并把解集在数轴上表示出来.
21.(10分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.
年龄组x
7
8
9
10
11
12
13
14
15
16
17
男生平均身高y
115.2
118.3
122.2
126.5
129.6
135.6
140.4
146.1
154.8
162.9
168.2
(1)该市男学生的平均身高从 岁开始增加特别迅速.
(2)求直线AB所对应的函数表达式.
(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?
22.(10分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.
(1)求证:PC是⊙O的切线.
(2)求tan∠CAB的值.
23.(12分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
24.(14分)求抛物线y=x2+x﹣2与x轴的交点坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.
【详解】
56亿=56×108=5.6×101,
故选C.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
2、A
【解析】
解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圆心O到AB的距离为2.故选A.
3、C
【解析】
根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.
【详解】
解:A、2m与3n不是同类项,不能合并,故错误;
B、m2•m3=m5,故错误;
C、正确;
D、(-m)3=-m3,故错误;
故选:C.
【点睛】
本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.
4、C
【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
【详解】
∵四边形ABCD是平行四边形,
∴,
由折叠的性质得:,,
∴,,
∴;
故选C.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
5、B
【解析】
分析:直接利用反比例函数的性质进而分析得出答案.
详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;
B.反比例函数y=,图象在第一、三象限,故此选项正确;
C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;
D.反比例函数y=,当x>1时,0<y<1,故此选项错误.
故选B.
点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.
6、A
【解析】
画出从正面看到的图形即可得到它的主视图.
【详解】
这个几何体的主视图为:
故选:A.
【点睛】
本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
7、C
【解析】
试题分析:根据主视图是从正面看得到的图形,可得答案.
解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
故选C.
考点:简单组合体的三视图.
8、D
【解析】
摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.
【详解】
解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,
∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.
故选D.
【点睛】
本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.
9、D
【解析】
解:A、符合AAS,能判定三角形全等;
B、符合SSS,能判定三角形全等;;
C、符合SAS,能判定三角形全等;
D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
故选D.
10、C
【解析】
根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
【详解】
解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
∴x1+x2+…+x7=﹣1
∵x1+x2+x3+x4=1﹣1﹣1+3=2;
x5+x6+x7+x8=3﹣3﹣3+5=2;
…
x97+x98+x99+x100=2…
∴x1+x2+…+x2016=2×(2016÷4)=1.
而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
∴x2017+x2018+x2019=﹣1009,
∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
故选C.
【点睛】
此题主要考查规律型:点的坐标,解题关键在于找到其规律
二、填空题(共7小题,每小题3分,满分21分)
11、﹣1<a<1
【解析】
解:∵k>0,
∴在图象的每一支上,y随x的增大而减小,
①当点(a-1,y1)、(a+1,y2)在图象的同一支上,
∵y1<y2,
∴a-1>a+1,
解得:无解;
②当点(a-1,y1)、(a+1,y2)在图象的两支上,
∵y1<y2,
∴a-1<0,a+1>0,
解得:-1<a<1.
故答案为:-1<a<1.
【点睛】
本题考查反比例函数的性质.
12、x<﹣4或x>1
【解析】
观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y<-3时,x的取值范围即可.
【详解】
由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,
且x=1时,y=-3,
所以,y<-3时,x的取值范围为x<-4或x>1.
故答案为x<-4或x>1.
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.
13、2
【解析】
试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.
∴C△EBF==C△HAE=2.
考点:1折叠问题;2勾股定理;1相似三角形.
14、
【解析】
设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.
【详解】
设△OAC和△BAD的直角边长分别为a、b,
则B点坐标为(a+b,a-b)
∵点B在反比例函数y=在第一象限的图象上,
∴(a+b)(a-b)=a2-b2=3
∴S△OAC﹣S△BAD=a2-b2=
【点睛】
此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.
15、x=0.1
【解析】
分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.
详解:方程两边都乘以2(x2﹣1)得,
8x+2﹣1x﹣1=2x2﹣2,
解得x1=1,x2=0.1,
检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,
当x=1时,x﹣1=0,
所以x=0.1是方程的解,
故原分式方程的解是x=0.1.
故答案为:x=0.1
点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
16、x>1
【解析】
分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.
详解:
∵kx+b>0,
∴一次函数的图像在x 轴上方时,
∴x的取值范围为:x>1.
故答案为x>1.
点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.
17、①③⑤
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
③利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可;
⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面积.
【详解】
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
,
∴△APD≌△AEB(SAS);
故此选项成立;
③∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
②过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE= = = ,
∴BF=EF= ,
故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP= ,
又∵PB= ,
∴BE= ,
∵△APD≌△AEB,
∴PD=BE= ,
∴S △ABP+S △ADP=S △ABD-S △BDP= S 正方形ABCD- ×DP×BE= ×(4+ )- × × = + .
故此选项不正确.
⑤∵EF=BF= ,AE=1,
∴在Rt△ABF中,AB 2=(AE+EF) 2+BF 2=4+ ,
∴S 正方形ABCD=AB 2=4+ ,
故此选项正确.
故答案为①③⑤.
【点睛】
本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.
三、解答题(共7小题,满分69分)
18、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.
【解析】
(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;
(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;
(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.
【详解】
解:(1)抛物线解析式为,
即,
,
顶点P的坐标为;
(2)抛物线的对称轴为直线,
设,
,
,解得,
E点坐标为;
(3)直线交x轴于F,作MN⊥直线x=2于H,如图,
,
而,
,
设,则,
在中,,
,
整理得,解得(舍去),,
Q点的坐标为.
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.
19、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【解析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.
【详解】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.
由题意得:,
解这个方程组得:,
答:生产一件甲产品需要15分,生产一件乙产品需要20分.
(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.
则生产甲种产品件,生产乙种产品件.
∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,
又≥60,得x≥900,
由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),
则小王该月收入最多是1644+1900=3544(元),
此时甲有=60(件),
乙有:=555(件),
答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【点睛】
考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
20、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.
【解析】
试题分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.
试题解析:由①得:﹣2x≥﹣2,即x≤1,
由②得:4x﹣2<5x+5,即x>﹣7,
所以﹣7<x≤1.
在数轴上表示为:
.
考点:解一元一次不等式组;在数轴上表示不等式的解集.
点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
21、(1)11;(2)y=3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右.
【解析】
(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.
【详解】
解:(1)由统计图可得,
该市男学生的平均身高从 11 岁开始增加特别迅速,
故答案为:11;
(2)设直线AB所对应的函数表达式
∵图象经过点
则,
解得.
即直线AB所对应的函数表达式:
(3)设直线CD所对应的函数表达式为:,
,得,
即直线CD所对应的函数表达式为:
把代入得
即该市18岁男生年龄组的平均身高大约是174cm左右.
【点睛】
此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.
22、(1)见解析;(2).
【解析】
(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.
(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.
【详解】
(1)如图,连接OC、BC
∵⊙O的半径为3,PB=2
∴OC=OB=3,OP=OB+PB=5
∵PC=1
∴OC2+PC2=OP2
∴△OCP是直角三角形,
∴OC⊥PC
∴PC是⊙O的切线.
(2)∵AB是直径
∴∠ACB=90°
∴∠ACO+∠OCB=90°
∵OC⊥PC
∴∠BCP+∠OCB=90°
∴∠BCP=∠ACO
∵OA=OC
∴∠A=∠ACO
∴∠A=∠BCP
在△PBC和△PCA中:
∠BCP=∠A,∠P=∠P
∴△PBC∽△PCA,
∴
∴tan∠CAB=
【点睛】
本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.
23、(1)见解析;(2)4.1
【解析】
试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;
(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.
试题解析:(1)∵四边形ABCD是正方形,
∴AB=AD,∠B=10°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=10°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)∵∠B=10°,AB=12,BM=5,
∴AM==13,AD=12,
∵F是AM的中点,
∴AF=AM=6.5,
∵△ABM∽△EFA,
∴,
即,
∴AE=16.1,
∴DE=AE-AD=4.1.
考点:1.相似三角形的判定与性质;2.正方形的性质.
24、(1,0)、(﹣2,0)
【解析】
试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可.
试题解析:解:令,即.
解得:,.
∴该抛物线与轴的交点坐标为(-2,0),(1,0).
相关试卷
2023-2024学年福建省泉州市洛江区南片区数学九上期末学业质量监测模拟试题含答案:
这是一份2023-2024学年福建省泉州市洛江区南片区数学九上期末学业质量监测模拟试题含答案,共8页。试卷主要包含了关于的方程的根的情况,正确的是,下列图形,把多项式分解因式,结果正确的是等内容,欢迎下载使用。
2023-2024学年福建省泉州市洛江区南片区八年级数学第一学期期末监测模拟试题含答案:
这是一份2023-2024学年福建省泉州市洛江区南片区八年级数学第一学期期末监测模拟试题含答案,共8页。试卷主要包含了下列各式中为最简二次根式的是,下列分式中,是最简分式的是,下列计算正确的是,下列各式中,不是二次根式的是等内容,欢迎下载使用。
2022-2023学年福建省泉州市洛江区南片区七下数学期末预测试题含答案:
这是一份2022-2023学年福建省泉州市洛江区南片区七下数学期末预测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,已知直线y=mx+n,下列调查中,适合采用普查的是等内容,欢迎下载使用。