搜索
    上传资料 赚现金
    英语朗读宝

    2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析

    2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析第1页
    2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析第2页
    2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析

    展开

    这是一份2022年福建省漳州市龙海市市级名校中考数学五模试卷含解析,共22页。试卷主要包含了最小的正整数是,函数y=mx2+等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知m=,n=,则代数式的值为 (  )
    A.3 B.3 C.5 D.9
    2.如图,在下列条件中,不能判定直线a与b平行的是( )

    A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
    3.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是  

    A.20、20 B.30、20 C.30、30 D.20、30
    4.下面的几何体中,主(正)视图为三角形的是( )
    A. B. C. D.
    5.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.

    下面有三个推断:
    ①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
    ②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
    ③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.
    其中合理的是(  )
    A.① B.② C.①② D.①③
    6.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是(  )

    A. B. C. D.
    7.最小的正整数是(  )
    A.0 B.1 C.﹣1 D.不存在
    8.函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,则m的值为(  )
    A.0 B.0或2 C.0或2或﹣2 D.2或﹣2
    9.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为(  )
    A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
    10.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第(  )象限.
    A.一 B.二 C.三 D.四
    11.下列图形不是正方体展开图的是(  )
    A. B.
    C. D.
    12.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为(  )

    A.16cm B.20cm C.24cm D.28cm
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.

    14.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.

    15.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
    16.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;
    ⑤由a2=b2,得a=b.其中正确的是_____.
    17.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )

    A.点M B.点N C.点P D.点Q
    18.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
    20.(6分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).
    (1)求直线y=kx+m的表达式;
    (2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.

    21.(6分)解不等式组
    请结合题意填空,完成本题的解答.
    (I)解不等式(1),得   ;
    (II)解不等式(2),得   ;
    (III)把不等式①和②的解集在数轴上表示出来:
    (IV)原不等式组的解集为   .

    22.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.

    23.(8分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=  ,c=  ,点C的坐标为  .如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.

    24.(10分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.

    (1)证明:DE是⊙O的切线;
    (2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
    (3)若⊙O的半径r=5,sinA=,求线段EF的长.
    25.(10分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.
    (1)判断四边形ACBD的形状,并说明理由;
    (2)求证:ME=AD.

    26.(12分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF.
    求证:FC∥AB.

    27.(12分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.求线段AD的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    由已知可得:,=.
    【详解】
    由已知可得:,
    原式=
    故选:B
    【点睛】
    考核知识点:二次根式运算.配方是关键.
    2、C
    【解析】
    解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
    B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
    C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
    D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
    故选C.
    【点睛】
    本题考查平行线的判定,难度不大.
    3、C
    【解析】
    分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.
    详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.
    故选C.
    点睛:考查众数和中位数的概念,熟记概念是解题的关键.
    4、C
    【解析】
    解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.
    5、B
    【解析】
    ①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.1.错误,
    故选B.
    【点睛】本题考查了利用频率估计概率,能正确理解相关概念是解题的关键.
    6、B
    【解析】
    俯视图是从上面看几何体得到的图形,据此进行判断即可.
    【详解】
    由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得
    拿掉第一排的小正方形,
    拿掉这个小立方体木块之后的几何体的俯视图是,
    故选B.
    【点睛】
    本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.
    7、B
    【解析】
    根据最小的正整数是1解答即可.
    【详解】
    最小的正整数是1.
    故选B.
    【点睛】
    本题考查了有理数的认识,关键是根据最小的正整数是1解答.
    8、C
    【解析】
    根据函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.
    【详解】
    解:∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    ∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,
    当m≠0时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,
    则△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,
    由上可得,m的值为0或2或﹣2,
    故选:C.
    【点睛】
    本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.
    9、D
    【解析】
    直接利用配方法将原式变形,进而利用平移规律得出答案.
    【详解】
    y=x2﹣6x+21
    =(x2﹣12x)+21
    =[(x﹣6)2﹣16]+21
    =(x﹣6)2+1,
    故y=(x﹣6)2+1,向左平移2个单位后,
    得到新抛物线的解析式为:y=(x﹣4)2+1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
    10、B
    【解析】
    根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
    【详解】
    ∵反比例函数y=的图象在一、三象限,
    ∴k>0,
    ∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
    故选:B.
    【点睛】
    考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
    11、B
    【解析】
    由平面图形的折叠及正方体的展开图解题.
    【详解】
    A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
    故选B.
    【点睛】
    此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
    12、C
    【解析】
    首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.
    【详解】
    ∵长方形ABCD中,AB∥CD,
    ∴∠BAC=∠DCA,
    又∵∠BAC=∠EAC,
    ∴∠EAC=∠DCA,
    ∴FC=AF=25cm,
    又∵长方形ABCD中,DC=AB=32cm,
    ∴DF=DC-FC=32-25=7cm,
    在直角△ADF中,AD==24(cm).
    故选C.
    【点睛】
    本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    ∵MN∥BC,
    ∴△AMN∽△ABC,
    ∴,即,
    ∴MN=1.
    故答案为1.
    14、6.
    【解析】
    作辅助线,根据反比例函数关系式得:S△AOD=, S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.
    【详解】
    如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,

    ∴BE∥AD,
    ∴△BOE∽△AOD,
    ∴,
    ∵OA=AC,
    ∴OD=DC,
    ∴S△AOD=S△ADC=S△AOC,
    ∵点A为函数y=(x>0)的图象上一点,
    ∴S△AOD=,
    同理得:S△BOE=,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为6.
    15、
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
    【详解】
    画树状图得:

    ∵共有12种等可能的结果,两次都摸到白球的有2种情况,
    ∴两次都摸到白球的概率是:=.
    故答案为:.
    【点睛】
    本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
    16、①②④
    【解析】
    ①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,
    ②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确,
    ③由a=b,得,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为可能为0,所以本选项不正确,
    ④由,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确,
    ⑤因为互为相反数的平方也相等,由a2=b2,得a=b,或a=-b,所以本选项错误,
    故答案为: ①②④.
    17、D
    【解析】
    D.
    试题分析:应用排他法分析求解:
    若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.
    若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.
    若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.
    故选D.
    考点:1.动点问题的函数图象分析;2.排他法的应用.
    18、10π
    【解析】
    解:根据圆锥的侧面积公式可得这个圆锥的侧面积=•1π•4•5=10π(cm1).
    故答案为:10π
    【点睛】
    本题考查圆锥的计算.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、30元
    【解析】
    试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.
    解:设第一批盒装花的进价是x元/盒,则
    2×=,
    解得 x=30
    经检验,x=30是原方程的根.
    答:第一批盒装花每盒的进价是30元.
    考点:分式方程的应用.
    20、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).
    【解析】
    (1)将A代入反比例函数中求出m的值,即可求出直线解析式,
    (2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.
    【详解】
    解:(1)∵点A(m,2)在双曲线上,
    ∴m=﹣1,
    ∴A(﹣1,2),直线y=kx﹣1,
    ∵点A(﹣1,2)在直线y=kx﹣1上,
    ∴y=﹣3x﹣1.
    (2) ,解得或,
    ∴B(,﹣3),
    ∴AB==,设P(n,0),
    则有(n﹣)2+32=
    解得n=5或,
    ∴P1(5,0),P2(,0).
    【点睛】
    本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.
    21、(1)x≥;(1)x≤1;(3)答案见解析;(4)≤x≤1.
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:(I)解不等式(1),得x≥;
    (II)解不等式(1),得x≤1;
    (III)把不等式①和②的解集在数轴上表示出来:

    (IV)原不等式组的解集为:≤x≤1.
    故答案为x≥、x≤1、≤x≤1.
    【点睛】
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    22、证明见解析.
    【解析】
    想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=FC+CD,
    ∴AC=FD,
    在△ABC 和△DEF 中,

    ∴△ABC≌△DEF(AAS)
    ∴BC=EF.
    【点睛】
    本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    23、(3)3, 2,C(﹣2,4);(2)y=﹣m2+m ,PQ与OQ的比值的最大值为;(3)S△PBA=3.
    【解析】
    (3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.
    (2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解.
    (3)求得P点坐标,利用图形割补法求解即可.
    【详解】
    (3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.
    ∴A(2,4),B(4,2).
    又∵抛物线过B(4,2)
    ∴c=2.
    把A(2,4)代入y=﹣x2+bx+2得,
    4=﹣×22+2b+2,解得,b=3.
    ∴抛物线解析式为,y=﹣x2+x+2.
    令﹣x2+x+2=4,
    解得,x=﹣2或x=2.
    ∴C(﹣2,4).
    (2)如图3,

    分别过P、Q作PE、QD垂直于x轴交x轴于点E、D.
    设P(m,﹣m2+m+2),Q(n,﹣n+2),
    则PE=﹣m2+m+2,QD=﹣n+2.
    又∵=y.
    ∴n=.
    又∵,即
    把n=代入上式得,

    整理得,2y=﹣m2+2m.
    ∴y=﹣m2+m.
    ymax=.
    即PQ与OQ的比值的最大值为.
    (3)如图2,

    ∵∠OBA=∠OBP+∠PBA=25°
    ∠PBA+∠CBO=25°
    ∴∠OBP=∠CBO
    此时PB过点(2,4).
    设直线PB解析式为,y=kx+2.
    把点(2,4)代入上式得,4=2k+2.
    解得,k=﹣2
    ∴直线PB解析式为,y=﹣2x+2.
    令﹣2x+2=﹣x2+x+2
    整理得, x2﹣3x=4.
    解得,x=4(舍去)或x=5.
    当x=5时,﹣2x+2=﹣2×5+2=﹣7
    ∴P(5,﹣7).
    过P作PH⊥cy轴于点H.
    则S四边形OHPA=(OA+PH)•OH=(2+5)×7=24.
    S△OAB=OA•OB=×2×2=7.
    S△BHP=PH•BH=×5×3=35.
    ∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.
    【点睛】
    本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.
    24、(1)见解析 (2)8(3)
    【解析】
    分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;
    (2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.
    (3)先证Rt△DFB∽Rt△DCB得,据此求得BF的长,再证△EFB∽△EDO得,据此求得EB的长,继而由勾股定理可得答案.
    详解:(1)如图,连接BD、OD,

    ∵AB是⊙O的直径,
    ∴∠BDA=90°,
    ∵BA=BC,
    ∴AD=CD,
    又∵AO=OB,
    ∴OD∥BC,
    ∵DE⊥BC,
    ∴OD⊥DE,
    ∴DE是⊙O的切线;
    (2)设⊙O的半径为x,则OB=OD=x,
    在Rt△ODE中,OE=4+x,∠E=30°,
    ∴,
    解得:x=4,
    ∴DE=4,S△ODE=×4×4=8,
    S扇形ODB=,
    则S阴影=S△ODE-S扇形ODB=8-;
    (3)在Rt△ABD中,BD=ABsinA=10×=2,
    ∵DE⊥BC,
    ∴Rt△DFB∽Rt△DCB,
    ∴,即,
    ∴BF=2,
    ∵OD∥BC,
    ∴△EFB∽△EDO,
    ∴,即,
    ∴EB=,
    ∴EF=.
    点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.
    25、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.
    【解析】
    (1)根据题意得出,即可得出结论;
    (2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.
    【详解】
    (1)解:四边形ACBD是菱形;理由如下:
    根据题意得:AC=BC=BD=AD,
    ∴四边形ACBD是菱形(四条边相等的四边形是菱形);
    (2)证明:∵DE∥AB,BE∥CD,
    ∴四边形BEDM是平行四边形,
    ∵四边形ACBD是菱形,
    ∴AB⊥CD,
    ∴∠BMD=90°,
    ∴四边形ACBD是矩形,
    ∴ME=BD,
    ∵AD=BD,
    ∴ME=AD.
    【点睛】
    本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.
    26、答案见解析
    【解析】
    利用已知条件容易证明△ADE≌△CFE,得出角相等,然后利用平行线的判定可以证明FC∥AB.
    【详解】
    解:∵E是AC的中点,∴AE=CE.
    在△ADE与△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.
    【点睛】
    本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.
    27、(1)1 ;(1) y=x1﹣4x+1或y=x1+6x+1.
    【解析】
    (1)解方程求出点A的坐标,根据勾股定理计算即可;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.
    【详解】
    解:(1)由x1﹣4=0得,x1=﹣1,x1=1,
    ∵点A位于点B的左侧,
    ∴A(﹣1,0),
    ∵直线y=x+m经过点A,
    ∴﹣1+m=0,
    解得,m=1,
    ∴点D的坐标为(0,1),
    ∴AD==1;
    (1)设新抛物线对应的函数表达式为:y=x1+bx+1,
    y=x1+bx+1=(x+)1+1﹣,
    则点C′的坐标为(﹣,1﹣),
    ∵CC′平行于直线AD,且经过C(0,﹣4),
    ∴直线CC′的解析式为:y=x﹣4,
    ∴1﹣=﹣﹣4,
    解得,b1=﹣4,b1=6,
    ∴新抛物线对应的函数表达式为:y=x1﹣4x+1或y=x1+6x+1.
    【点睛】
    本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.

    相关试卷

    辽宁省市级名校2021-2022学年中考数学五模试卷含解析:

    这是一份辽宁省市级名校2021-2022学年中考数学五模试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣1的值为,若二次函数的图象经过点,计算-3-1的结果是等内容,欢迎下载使用。

    2022届广西岳池县市级名校中考数学五模试卷含解析:

    这是一份2022届广西岳池县市级名校中考数学五模试卷含解析,共19页。试卷主要包含了下列计算正确的是,a的倒数是3,则a的值是,下列说法中,正确的是等内容,欢迎下载使用。

    2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年福建省(南平厦门福州漳州市)市级名校中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx+c,下列说法正确的是,下列说法,图为小明和小红两人的解题过程等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map