2022年东营市重点中学中考数学模拟试题含解析
展开这是一份2022年东营市重点中学中考数学模拟试题含解析,共22页。试卷主要包含了如图,两个反比例函数y1=,如图,在平面直角坐标系中,将点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若a+b=3,,则ab等于( )
A.2 B.1 C.﹣2 D.﹣1
2.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
3.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30° B.36° C.54° D.72°
4.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为( )
A.8073 B.8072 C.8071 D.8070
5.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为( )
A.:1 B.2: C.2:1 D.29:14
6.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
7.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )
A.4 B..5 C.6 D.8
8.如图: 在中,平分,平分,且交于,若,则等于( )
A.75 B.100 C.120 D.125
9.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )
A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)
C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)
10.若不等式组的整数解共有三个,则a的取值范围是( )
A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6
二、填空题(共7小题,每小题3分,满分21分)
11.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.
12.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.
13.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.
14.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .
15.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
16.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.
17.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.
三、解答题(共7小题,满分69分)
18.(10分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:
组别
身高
A
x<160
B
160≤x<165
C
165≤x<170
D
170≤x<175
E
x≥175
根据图表提供的信息,回答下列问题:
(1)样本中,男生的身高众数在 组,中位数在 组;
(2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;
(3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?
19.(5分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
20.(8分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.
(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;
(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);
(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.
21.(10分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
(1)求c与b的函数关系式;
(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.
22.(10分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.
23.(12分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
24.(14分)我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
∵a+b=3,
∴(a+b)2=9
∴a2+2ab+b2=9
∵a2+b2=7
∴7+2ab=9,7+2ab=9
∴ab=1.
故选B.
考点:完全平方公式;整体代入.
2、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
3、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
【点睛】
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
4、A
【解析】
观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.
【详解】
解:观察图形的变化可知:
第1个图案中涂有阴影的小正方形个数为:5=4×1+1;
第2个图案中涂有阴影的小正方形个数为:9=4×2+1;
第3个图案中涂有阴影的小正方形个数为:13=4×3+1;
…
发现规律:
第n个图案中涂有阴影的小正方形个数为:4n+1;
∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.
故选:A.
【点睛】
本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.
5、A
【解析】
试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
故选A.
考点:反比例函数系数k的几何意义
6、D
【解析】
试题分析:A.是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项正确.
故选D.
考点:轴对称图形.
7、C
【解析】
解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得
,
即,
解得EF=6,
故选C.
8、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
【详解】
解:∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
∴△EFC为直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故选:B.
【点睛】
本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
9、A
【解析】
分顺时针旋转,逆时针旋转两种情形求解即可.
【详解】
解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),
故选A.
【点睛】
本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.
10、C
【解析】
首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式组得:2<x≤a,
∵不等式组的整数解共有3个,
∴这3个是3,4,5,因而5≤a<1.
故选C.
【点睛】
本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
二、填空题(共7小题,每小题3分,满分21分)
11、-1.
【解析】
解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.
12、
【解析】
根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.
【详解】
解:多边形的边数是:360°÷40°=9,
则内角和是:(9-2)•180°=1260°.
故答案为1260°.
【点睛】
本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.
13、100
【解析】
先在直角△ABE中利用三角函数求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.
解:如图,作AE⊥BC于点E.
∵∠EAB=30°,AB=100,
∴BE=50,AE=50.
∵BC=200,
∴CE=1.
在Rt△ACE中,根据勾股定理得:AC=100.
即此时王英同学离A地的距离是100米.
故答案为100.
解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
14、①②④.
【解析】
①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.
②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.
③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.
④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.
故一定正确的是①②④
15、60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
【详解】
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为60°或120°.
【点睛】
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
16、, +2.
【解析】
当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.
【详解】
当点P旋转至CA的延长线上时,如图2.
∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,
∴BP=,
∵BP的中点是F,
∴CF=BP= .
取AB的中点M,连接MF和CM,如图2.
∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,
∴AB=2.
∵M为AB中点,
∴CM=AB=,
∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,
∴AP=AD=4,
∵M为AB中点,F为BP中点,
∴FM=AP=2.
当且仅当M、F、C三点共线且M在线段CF上时CF最大,
此时CF=CM+FM=+2.
故答案为, +2.
【点睛】
考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.
17、73°
【解析】
试题解析:∵∠CBD=34°,
∴∠CBE=180°-∠CBD=146°,
∴∠ABC=∠ABE=∠CBE=73°.
三、解答题(共7小题,满分69分)
18、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.
【解析】
根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.
【详解】
解:(1)∵直方图中,B组的人数为12,最多,
∴男生的身高的众数在B组,
男生总人数为:4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴男生的身高的中位数在C组,
故答案为B,C;
(2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有:40×5%=2(人),
故答案为2;
(3)600×+480×(25%+15%)=270+192=462(人).
答:该校身高在165≤x<175之间的学生约有462人.
【点睛】
考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.
19、(30+30)米.
【解析】
解:设建筑物AB的高度为x米
在Rt△ABD 中,∠ADB=45°
∴AB=DB=x
∴BC=DB+CD= x+60
在Rt△ABC 中,∠ACB=30°,
∴tan∠ACB=
∴
∴
∴x=30+30
∴建筑物AB的高度为(30+30)米
20、(1) ;(2)5π;(3)PB的值为或.
【解析】
(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;
(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;
(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.
【详解】
解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.
∴∠DNM=∠AMN=90°,
∵AD∥BC,
∴∠DAM=∠AMN=∠DNM=90°,
∴四边形AMND是矩形,
∴AM=DN,
∵AB=CD=13,
∴Rt△ABM≌Rt△DCN,
∴BM=CN,
∵AD=11,BC=21,
∴BM=CN=5,
∴AM==12,
在Rt△ABM中,sinB==.
(2)如图2中,连接AC.
在Rt△ACM中,AC===20,
∵PB=PA,BE=EC,
∴PE=AC=10,
∴的长==5π.
(3)如图3中,当点Q落在直线AB上时,
∵△EPB∽△AMB,
∴==,
∴==,
∴PB=.
如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.
设PB=x,则AP=13﹣x.
∵AD∥BC,
∴∠B=∠HAP,
∴PG=x,PH=(13﹣x),
∴BG=x,
∵△PGE≌△QHP,
∴EG=PH,
∴﹣x=(13﹣x),
∴BP=.
综上所述,满足条件的PB的值为或.
【点睛】
本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.
21、(1);(2);(3)
【解析】
(1)把A(-1,0)代入y=x2-bx+c,即可得到结论;
(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;
(3)连接QM,DM,根据平行线的判定得到QN∥MH,根据平行线的性质得到∠NMH=∠QNM,根据已知条件得到∠QMN=∠MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到∠NMH=∠MDH推出∠NMD=90°;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论.
【详解】
(1)把A(﹣1,0)代入,
∴,
∴;
(2)由(1)得,,
∵点D为抛物线顶点,
∴,
∴,
当时,,
∴,
∴,
∴,
∴,
∴,
∴,
将代入得,,
解得:,(舍去),
∴二次函数解析式为:;
(3)连接QM,DM,
∵,,
∴,∴,
∴,
∵,
∴,
∵,
∴,设,则,
∴,同理,
设,则,∴,
在中,,
∴,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
∴;
∵,
∴,,
∵,
∴,即,
解得:,(舍去),
∴,
∵,
∴,
∴,
当时,,
∴,
∴,
∴,
∵,
∴,
∴,,,
过P作于T,
∴,
∴,
∴.
【点睛】
本题考查了待定系数法求二次函数的解析式,平行线的性质,三角函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.
22、(1)证明见解析(2)13
【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
【详解】
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
【点睛】
解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
23、(1)见解析;(2)图见解析;.
【解析】
(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.
(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
【详解】
解:(1)△A1B1C1如图所示.
(2)△A2B2C2如图所示.
∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.
∴S△A1B1C1:S△A2B2C2=()2=.
24、1.
【解析】
分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.
详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=1,
所以二进制中的数101011等于十进制中的1.
点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.
相关试卷
这是一份2023年山东省东营市中考数学模拟试卷(5月份)(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023届云南省重点中学中考数学模拟试题含解析,共17页。
这是一份梧州市重点中学2022-2023学年中考数学模拟试题含解析,共18页。