年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年福建省福州市十中学中考数学考前最后一卷含解析

    2022年福建省福州市十中学中考数学考前最后一卷含解析第1页
    2022年福建省福州市十中学中考数学考前最后一卷含解析第2页
    2022年福建省福州市十中学中考数学考前最后一卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年福建省福州市十中学中考数学考前最后一卷含解析

    展开

    这是一份2022年福建省福州市十中学中考数学考前最后一卷含解析,共20页。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列计算正确的是(  )
    A.a6÷a2=a3 B.(﹣2)﹣1=2
    C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=1
    2.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于(  )

    A.2cm B.3cm C.6cm D.7cm
    3.下列二次根式中,是最简二次根式的是(  )
    A. B. C. D.
    4.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=(  )

    A.15° B.30° C.45° D.60°
    5.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是(  )
    A.两点之间的所有连线中,线段最短
    B.经过两点有一条直线,并且只有一条直线
    C.直线外一点与直线上各点连接的所有线段中,垂线段最短
    D.经过一点有且只有一条直线与已知直线垂直
    6.如图中任意画一个点,落在黑色区域的概率是(  )

    A. B. C.π D.50
    7.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为(  )
    A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
    8.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    9.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )

    A.AE=6cm B.
    C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
    10.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(   )
    A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.的系数是_____,次数是_____.
    12.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.

    13.已知图中的两个三角形全等,则∠1等于____________.

    14.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________.
    15.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
    16.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,那么等于( )

    A.; B.; C.; D..
    三、解答题(共8题,共72分)
    17.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
    (1)求证:∠DAC=∠DCE;
    (2)若AB=2,sin∠D=,求AE的长.

    18.(8分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
    (I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
    (II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
    (III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).

    19.(8分)高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(取1.732)

    20.(8分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).
    (1)求m的值和一次函数的解析式;
    (2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;
    (3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.

    21.(8分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
    (1)求点C的坐标;
    (2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.
    (3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.

    22.(10分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+()﹣1.
    (2)先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.
    23.(12分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
    小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
    24.已知:如图,梯形ABCD,DC∥AB,对角线AC平分∠BCD,点E在边CB的延长线上,EA⊥AC,垂足为点A.
    (1)求证:B是EC的中点;
    (2)分别延长CD、EA相交于点F,若AC2=DC•EC,求证:AD:AF=AC:FC.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    解:A.a6÷a2=a4,故A错误;
    B.(﹣2)﹣1=﹣,故B错误;
    C.(﹣3x2)•2x3=﹣6x5,故C错;
    D.(π﹣3)0=1,故D正确.
    故选D.
    2、D
    【解析】
    【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.
    【详解】因为,AB=10cm,BC=4cm,
    所以,AC=AB-BC=10-4=6(cm)
    因为,点D是线段AC的中点,
    所以,CD=3cm,
    所以,BD=BC+CD=3+4=7(cm)
    故选D
    【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.
    3、B
    【解析】
    根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.
    【详解】
    A、 =4,不符合题意;
    B、是最简二次根式,符合题意;
    C、=,不符合题意;
    D、=,不符合题意;
    故选B.
    【点睛】
    本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
    4、B
    【解析】
    根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
    【详解】
    解:∵OA=AB,OA=OB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°,
    ∴∠ACB=30°,
    故选B.
    【点睛】
    本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
    5、B
    【解析】
    本题要根据过平面上的两点有且只有一条直线的性质解答.
    【详解】
    根据两点确定一条直线.
    故选:B.
    【点睛】
    本题考查了“两点确定一条直线”的公理,难度适中.
    6、B
    【解析】
    抓住黑白面积相等,根据概率公式可求出概率.
    【详解】
    因为,黑白区域面积相等,
    所以,点落在黑色区域的概率是.
    故选B
    【点睛】
    本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.
    7、A
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    抛物线y=x2的顶点坐标为(0,0),
    先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),
    所以,平移后的抛物线的解析式为y=(x+2)2﹣1.
    故选:A.
    【点睛】
    本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.
    8、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    9、D
    【解析】
    (1)结论A正确,理由如下:
    解析函数图象可知,BC=10cm,ED=4cm,
    故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.
    (2)结论B正确,理由如下:
    如图,连接EC,过点E作EF⊥BC于点F,

    由函数图象可知,BC=BE=10cm,,
    ∴EF=1.∴.
    (3)结论C正确,理由如下:
    如图,过点P作PG⊥BQ于点G,

    ∵BQ=BP=t,∴.
    (4)结论D错误,理由如下:
    当t=12s时,点Q与点C重合,点P运动到ED的中点,
    设为N,如图,连接NB,NC.

    此时AN=1,ND=2,由勾股定理求得:NB=,NC=.
    ∵BC=10,
    ∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
    故选D.
    10、D
    【解析】
    分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:
    A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;
    B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;
    C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;
    D、y=3x2的图象平移不能得到y=2x2,故本选项正确.
    故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、 1
    【解析】
    根据单项式系数及次数的定义进行解答即可.
    【详解】
    根据单项式系数和次数的定义可知,﹣的系数是,次数是1.
    【点睛】
    本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.
    12、1
    【解析】
    主视图、左视图是分别从物体正面、左面看,所得到的图形.
    【详解】
    易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
    故答案为1.
    13、58°
    【解析】

    如图,∠2=180°−50°−72°=58°,
    ∵两个三角形全等,
    ∴∠1=∠2=58°.
    故答案为58°.
    14、y=-x+2(答案不唯一)
    【解析】
    ①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为 y=-x+2,
    故答案为y=-x+2(答案不唯一).
    15、1
    【解析】
    设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
    【详解】
    设购买篮球x个,则购买足球个,
    根据题意得:,
    解得:.
    为整数,
    最大值为1.
    故答案为1.
    【点睛】
    本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
    16、D
    【解析】
    利用△DAO与△DEA相似,对应边成比例即可求解.
    【详解】
    ∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA
    ∴△DAO∽△DEA


    ∵AE=AD

    故选D.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2).
    【解析】
    (1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;
    (2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=,于是可求得AE=.
    【详解】
    解:(1)∵AD是圆O的切线,∴∠DAB=90°.
    ∵AB是圆O的直径,∴∠ACB=90°.
    ∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.
    ∵OC=OB,∴∠B=∠OCB.
    又∵∠DCE=∠OCB,∴∠DAC=∠DCE.
    (2)∵AB=2,∴AO=1.
    ∵sin∠D=,∴OD=3,DC=2.
    在Rt△DAO中,由勾股定理得AD==.
    ∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴,即.
    解得:DE=,∴AE=AD﹣DE=.
    18、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
    (Ⅲ)P().
    【解析】
    (Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
    (Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
    (Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
    【详解】
    (Ⅰ)如图①中,作DH⊥BC于H,

    ∵△AOB是等边三角形,DC∥OA,
    ∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
    ∴△CDB是等边三角形,
    ∵CB=2,DH⊥CB,
    ∴CH=HB=,DH=3,
    ∴D(6﹣,3),
    ∵C′B=3,
    ∴CC′=2﹣3,
    ∴DD′=CC′=2﹣3,
    ∴D′(3+,3).
    (Ⅱ)当BB'=时,四边形MBND'是菱形,
    理由:如图②中,

    ∵△ABC是等边三角形,
    ∴∠ABO=60°,
    ∴∠ABB'=180°﹣∠ABO=120°,
    ∵BN是∠ACC'的角平分线,
    ∴∠NBB′'=∠ABB'=60°=∠D′C′B,
    ∴D'C'∥BN,∵AB∥B′D′
    ∴四边形MBND'是平行四边形,
    ∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
    ∴△MC′B'和△NBB'是等边三角形,
    ∴MC=CE',NC=CC',
    ∵B'C'=2,
    ∵四边形MBND'是菱形,
    ∴BN=BM,
    ∴BB'=B'C'=;
    (Ⅲ)如图连接BP,

    在△ABP中,由三角形三边关系得,AP<AB+BP,
    ∴当点A,B,P三点共线时,AP最大,
    如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
    ∴CP=3,
    ∴AP=6+3=9,
    在Rt△APD'中,由勾股定理得,AD'==2.
    此时P(,﹣).
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
    19、不需要改道行驶
    【解析】
    解:过点A作AH⊥CF交CF于点H,由图可知,

    ∵∠ACH=75°-15°=60°,
    ∴.
    ∵AH>100米,
    ∴消防车不需要改道行驶.
    过点A作AH⊥CF交CF于点H,应用三角函数求出AH的长,大于100米,不需要改道行驶,不大于100米,需要改道行驶.
    20、(1)y=1x﹣1(1)1(3)x>1
    【解析】
    试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;
    (1)先确定B点坐标,然后根据三角形面积公式计算;
    (3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.
    试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),
    把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,
    所以一次函数解析式为y=1x﹣1;
    (1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),
    所以S△AOB=×1×1=1;
    (3)自变量x的取值范围是x>1.
    考点:两条直线相交或平行问题
    21、(1)C(﹣3,2);(2)y1=, y2=﹣x+3; (3)3<x<1.
    【解析】
    分析:
    (1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;
    (2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;
    (3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案.
    详解:
    (1)作CN⊥x轴于点N,
    ∴∠CAN=∠CAB=∠AOB=90°,
    ∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,
    ∴∠CAN=∠OAB,
    ∵A(﹣2,0)B(0,1),
    ∴OB=1,AO=2,
    在Rt△CAN和Rt△AOB,
    ∵ ,
    ∴Rt△CAN≌Rt△AOB(AAS),
    ∴AN=BO=1,CN=AO=2,NO=NA+AO=3,
    又∵点C在第二象限,
    ∴C(﹣3,2);
    (2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),
    设这个反比例函数的解析式为:y1=,
    又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣1+2c=c,
    解得c=1,即反比例函数解析式为y1=,
    此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,
    ∵ ,
    ∴ ,
    ∴直线C′B′的解析式为y2=﹣x+3;
    (3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),
    ∴若y1<y2时,则3<x<1.

    点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.
    22、(1)6;(2)﹣(x+1),1.
    【解析】
    (1)原式=3+1﹣2×+3=6
    (2)由题意可知:x2+3x+2=0,
    解得:x=﹣1或x=﹣2
    原式=(x﹣1)÷
    =﹣(x+1)
    当x=﹣1时,x+1=0,分式无意义,
    当x=﹣2时,
    原式=1
    23、(1)落回到圈的概率;(2)可能性不一样.
    【解析】
    (1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
    (2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
    【详解】
    (1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
    落回到圈的概率;
    (2)列表得:

    1
    2
    3
    4
    5
    6
    1






    2






    3






    4






    5






    6






    共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
    ∴,
    ∵,
    可能性不一样
    【点睛】
    本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    24、(1)详见解析;(2)详见解析.
    【解析】
    (1)根据平行线的性质结合角平分线的性质可得出∠BCA=∠BAC,进而可得出BA=BC,根据等角的余角相等结合等角对等边,即可得出AB=BE,进而可得出BE=BA=BC,此题得证;
    (2)根据AC2=DC•EC结合∠ACD=∠ECA可得出△ACD∽△ECA,根据相似三角形的性质可得出∠ADC=∠EAC=90°,进而可得出∠FDA=∠FAC=90°,结合∠AFD=∠CFA可得出△AFD∽△CFA,再利用相似三角形的性质可证出AD:AF=AC:FC.
    【详解】
    (1)∵DC∥AB,∴∠DCA=∠BAC.
    ∵AC平分∠BCD,∴∠BCA=∠BAC=∠DCA,∴BA=BC.
    ∵∠BAC+∠BAE=90°,∠ACB+∠E =90°,∴∠BAE=∠E,∴AB=BE,∴BE=BA=BC,∴B是EC的中点;
    (2)∵AC2=DC•EC,∴.
    ∵∠ACD=∠ECA,∴△ACD∽△ECA,∴∠ADC=∠EAC=90°,∴∠FDA=∠FAC=90°.
    又∵∠AFD=∠CFA,∴△AFD∽△CFA,∴AD:AF=AC:FC.

    【点睛】
    本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用等角对等边找出BA=BC、BE=BA;(2)利用相似三角形的判定定理找出△AFD∽△CFA.

    相关试卷

    2022年福建省福州市仓山区重点达标名校中考数学考前最后一卷含解析:

    这是一份2022年福建省福州市仓山区重点达标名校中考数学考前最后一卷含解析,共26页。试卷主要包含了下列命题中假命题是,满足不等式组的整数解是,下列说法错误的是等内容,欢迎下载使用。

    2022届福建省南平市育才中学中考数学考前最后一卷含解析:

    这是一份2022届福建省南平市育才中学中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,一元二次方程2=1的解为,下列算式中,结果等于x6的是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022学年福建省福州市闽清县中考考前最后一卷数学试卷含解析:

    这是一份2021-2022学年福建省福州市闽清县中考考前最后一卷数学试卷含解析,共19页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map