2022年福建省泉州市泉港一中学、城东中学中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.已知M=9x2-4x+3,N=5x2+4x-2,则M与N的大小关系是( )
A.M>N B.M=N C.M<N D.不能确定
2.如图,已知△ABC,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠A=50°,则∠ACB 的度数为( )
A.90° B.95° C.105° D.110°
3.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为( )
A.2 B.3 C.4 D.6
4.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )
A. B. C. D.
5.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的( )
A.平均数 B.中位数 C.众数 D.方差
6.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )
A.13 B.3 C.-13 D.-3
7.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
8.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
A. B. C. D.
9.在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是( )
A.中位数不变,方差不变 B.中位数变大,方差不变
C.中位数变小,方差变小 D.中位数不变,方差变小
10.不等式组的解在数轴上表示为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知(x-ay)(x+ay),那么a=_______
12.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.
13.如图,菱形ABCD中,AB=4,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_____.
14.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .
15.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.
16.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________
三、解答题(共8题,共72分)
17.(8分)解不等式组
请结合题意填空,完成本题的解答
(1)解不等式①,得_______.
(2)解不等式②,得_______.
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为_______________.
18.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
19.(8分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE,求证:AF=CE.
20.(8分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.
(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;
(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.
21.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
(I)如图①,若BC为⊙O的直径,求BD、CD的长;
(II)如图②,若∠CAB=60°,求BD、BC的长.
22.(10分)如果a2+2a-1=0,求代数式的值.
23.(12分)如图,正方形ABCD中,BD为对角线.
(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若AB=4,求△DEF的周长.
24.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;
(2)先化简,再求值:()+,其中a=﹣2+.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
若比较M,N的大小关系,只需计算M-N的值即可.
【详解】
解:∵M=9x2-4x+3,N=5x2+4x-2,
∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,
∴M>N.
故选A.
【点睛】
本题的主要考查了比较代数式的大小,可以让两者相减再分析情况.
2、C
【解析】
根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.
【详解】
∵CD=AC,∠A=50°
∴∠CDA=∠A=50°
∵∠CDA+∠A+∠DCA=180°
∴∠DCA=80°
根据作图步骤可知,MN垂直平分线段BC
∴BD=CD
∴∠B=∠BCD
∵∠B+∠BCD=∠CDA
∴2∠BCD=50°
∴∠BCD=25°
∴∠ACB=∠ACD+∠BCD=80°+25°=105°
故选C
【点睛】
本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.
3、B
【解析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
4、B
【解析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
【详解】
解:主视图,如图所示:
.
故选B.
【点睛】
本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.
5、B
【解析】
根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
【详解】
因为需要保证不少于50%的骑行是免费的,
所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
故选B.
【点睛】
本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
6、A
【解析】
由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.
7、C
【解析】
根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
【详解】
对于数据:6,3,4,7,6,0,1,
这组数据按照从小到大排列是:0,3,4,6,6,7,1,
这组数据的平均数是: 中位数是6,
故选C.
【点睛】
本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
8、D
【解析】试题分析:俯视图是从上面看到的图形.
从上面看,左边和中间都是2个正方形,右上角是1个正方形,
故选D.
考点:简单组合体的三视图
9、D
【解析】
根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断.
【详解】
∵原数据的中位数是=3,平均数为=3,
∴方差为×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=;
∵新数据的中位数为3,平均数为=3,
∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2;
所以新数据与原数据相比中位数不变,方差变小,
故选:D.
【点睛】
本题考查了中位数和方差,解题的关键是掌握中位数和方差的定义.
10、C
【解析】
先解每一个不等式,再根据结果判断数轴表示的正确方法.
【详解】
解:由不等式①,得3x>5-2,解得x>1,
由不等式②,得-2x≥1-5,解得x≤2,
∴数轴表示的正确方法为C.
故选C.
【点睛】
考核知识点:解不等式组.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、±4
【解析】
根据平方差公式展开左边即可得出答案.
【详解】
∵(x-ay)(x+ay)=
又(x-ay)(x+ay)
∴
解得:a=±4
故答案为:±4.
【点睛】
本题考查的平方差公式:.
12、
【解析】
解:列表如下:
所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=.故答案为.
13、
【解析】
第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长.
【详解】
解:∵菱形ABCD中,AB=4,∠C=60°,
∴△ABD是等边三角形, BO=DO=2,
AO==,
第一次旋转的弧长=,
∵第一、二次旋转的弧长和=+=,
第三次旋转的弧长为:,
故经过6次这样的操作菱形中心O所经过的路径总长为:2×(+)=.
故答案为:.
【点睛】
本题考查菱形的性质,翻转的性质以及解直角三角形的知识.
14、7
【解析】
试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
又∵∠B=∠C=60°,∴△ABD∽△DCE.
∴,即.
∴.
15、
【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.
【详解】
在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,
∴A′D=CA′=1,CD=A′D=,
∴.
故答案为:
【点睛】
本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.
16、1
【解析】
分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
详解:设D(a,),
∵点D为矩形OABC的AB边的中点,
∴B(2a,),
∴E(2a,),
∵△BDE的面积为1,
∴•a•(-)=1,解得k=1.
故答案为1.
点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
三、解答题(共8题,共72分)
17、(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.
【解析】
分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.
【详解】
解:(1)x≥-1;
(2)x≤1;
(3);
(4)原不等式组的解集为-1≤x≤1.
【点睛】
本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
18、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
【解析】
(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
【详解】
(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);
(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
故答案为(1)(2,-2);(2)(1,0)
【点睛】
此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
19、见解析
【解析】
易证△ABE≌△CDF,得AE=CF,即可证得△AEF≌△CFE,即可得证.
【详解】
在平行四边形ABCD中,AB∥CD,AB=CD
∴∠ABE=∠CDF,
又AE⊥BD,CF⊥BD
∴△ABE≌△CDF(AAS),
∴AE=CF
又∠AEF=∠CFE,EF=FE,
∴△AEF≌△CFE(SAS)
∴AF=CE.
【点睛】
此题主要考查平行四边形的性质与全等三角形的判定与性质,解题的关键是熟知平行四边形的性质定理.
20、(1);(2)P(小宇“略胜一筹”)=.
【解析】
分析:
(1)由题意可知,小宇从甲箱中任意摸出一个球,共有3种等可能结果出现,其中结果为3的只有1种,由此可得小宇从甲箱中任取一个球,刚好摸到“标有数字3”的概率为;
(2)根据题意通过列表的方式列举出小宇和小静摸球的所有等可能结果,然后根据表中结果进行解答即可.
详解:
(1)P(摸出标有数字是3的球)=.
(2)小宇和小静摸球的所有结果如下表所示:
小静 小宇 | 4 | 5 | 6 |
3 | (3,4) | (3,5) | (3,6) |
4 | (4,4) | (4,5) | (4,6) |
5 | (5,4) | (5,5) | (5,6) |
从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此
P(小宇“略胜一筹”)=.
点睛:能正确通过列表的方式列举出小宇在甲箱中任摸一个球和小静在乙箱中任摸一个球的所有等可能结果,是正确解答本题第2小题的关键.
21、(1)BD=CD=5;(2)BD=5,BC=5.
【解析】
(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;
(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.
【详解】
(1)∵BC是⊙O的直径,
∴∠CAB=∠BDC=90°.
∵AD平分∠CAB,
∴,
∴CD=BD.
在直角△BDC中,BC=10,CD2+BD2=BC2,
∴BD=CD=5,
(2)如图②,连接OB,OD,OC,
∵AD平分∠CAB,且∠CAB=60°,
∴∠DAB=∠CAB=30°,
∴∠DOB=2∠DAB=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴BD=OB=OD.
∵⊙O的直径为10,则OB=5,
∴BD=5,
∵AD平分∠CAB,
∴,
∴OD⊥BC,设垂足为E,
∴BE=EC=OB•sin60°=,
∴BC=5.
【点睛】
本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
22、1
【解析】
==1.
故答案为1.
23、(1)见解析;(2)2+1.
【解析】
分析:(1)、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案.
详解:(1)如图,EF为所作;
(2)解:∵四边形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,
∴∠DEF=90°,∠EDF=∠EFD=15°, DE=EF=CD=2,∴DF=DE=2,
∴△DEF的周长=DF+DE+EF=2+1.
点睛:本题主要考查的是中垂线的性质,属于基础题型.理解中垂线的性质是解题的关键.
24、(1)-1;(2).
【解析】
(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;
(2)先化简原式,然后将a的值代入即可求出答案.
【详解】
(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;
(2)原式=+
=
当a=﹣2+时,原式==.
【点睛】
本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
福建省泉州市泉港一中学、城东中学2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案: 这是一份福建省泉州市泉港一中学、城东中学2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,如果两个相似三角形的相似比为2,如图,该几何体的主视图是等内容,欢迎下载使用。
福建省泉港一中学、城东中学2021-2022学年中考三模数学试题含解析: 这是一份福建省泉港一中学、城东中学2021-2022学年中考三模数学试题含解析,共26页。试卷主要包含了已知,代数式的值为,4的平方根是等内容,欢迎下载使用。
2022届福建省泉州市泉港一中学毕业升学考试模拟卷数学卷含解析: 这是一份2022届福建省泉州市泉港一中学毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,函数y=中,x的取值范围是,是两个连续整数,若,则分别是.,估算的运算结果应在,的倒数是等内容,欢迎下载使用。