2022年广东省惠州市惠阳区重点中学中考数学模试卷含解析
展开
这是一份2022年广东省惠州市惠阳区重点中学中考数学模试卷含解析,共22页。试卷主要包含了若,则x-y的正确结果是,有下列四个命题,实数的倒数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )
A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011
2.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为( )
A.50m B.25m C.(50﹣)m D.(50﹣25)m
3.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为( )
A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×1011
4.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )
A. B.
C. D.
5.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
6.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( )
A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
7.若,则x-y的正确结果是( )
A.-1 B.1 C.-5 D.5
8.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
9.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有( )
A.1个 B.2个 C.3个 D.4个
10.实数的倒数是( )
A. B. C. D.
11.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是( )
A. B. C. D.
12.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算()()的结果等于_____.
14.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.
15.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.
16.化简÷=_____.
17.分解因式:3a2﹣12=___.
18.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.
20.(6分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:
(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。
(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.
21.(6分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
22.(8分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
23.(8分)先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.
24.(10分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
(1)画出△ABC关于直线n的对称图形△A′B′C′;
(2)直线m上存在一点P,使△APB的周长最小;
①在直线m上作出该点P;(保留画图痕迹)
②△APB的周长的最小值为 .(直接写出结果)
25.(10分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
26.(12分)观察下列等式:
第1个等式:;
第2个等式:;
第3个等式:;
第4个等式:;
…
请解答下列问题:按以上规律列出第5个等式:a5= = ;用含有n的代数式表示第n个等式:an= = (n为正整数);求a1+a2+a3+a4+…+a100的值.
27.(12分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.
(I)如图1,若α=30°,求点B′的坐标;
(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
解:将546亿用科学记数法表示为:5.46×1010 ,故本题选C.
【点睛】
本题考查的是科学计数法,熟练掌握它的定义是解题的关键.
2、C
【解析】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
【详解】
如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
则AB=MN,AM=BN.
在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
则AB=MN=(50﹣)m.
故选C.
【点睛】
本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
3、B
【解析】
科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.
【详解】
解:929亿=92900000000=9.29×11.
故选B.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
4、A
【解析】
根据平行线分线段成比例定理逐项分析即可.
【详解】
A.∵,
∴,,
∴,故A正确;
B. ∵,
∴,故B不正确;
C. ∵,
∴ ,故C不正确;
D. ∵,
∴,故D不正确;
故选A.
【点睛】
本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
5、C
【解析】
根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
【详解】
∵在△ABC中,AD和BE是高,
∴∠ADB=∠AEB=∠CEB=90°,
∵点F是AB的中点,
∴FD=AB,FE=AB,
∴FD=FE,①正确;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中, ,
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,②正确;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD∽△BCE,
∴,即BC•AD=AB•BE,
∵∠AEB=90°,AE=BE,
∴AB=BE
BC•AD=BE•BE,
∴BC•AD=AE2;③正确;
设AE=a,则AB=a,
∴CE=a﹣a,
∴=,
即 ,
∵AF=AB,
∴ ,
∴S△BEC≠S△ADF,故④错误,
故选:C.
【点睛】
本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
6、B
【解析】
试题解析:0.00 000 069=6.9×10-7,
故选B.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
7、A
【解析】
由题意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故选:A.
8、D
【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
【详解】
解:
四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
,,
四边形是平行四边形(对边相互平行的四边形是平行四边形);
过点分别作,边上的高为,.则
(两纸条相同,纸条宽度相同);
平行四边形中,,即,
,即.故正确;
平行四边形为菱形(邻边相等的平行四边形是菱形).
,(菱形的对角相等),故正确;
,(平行四边形的对边相等),故正确;
如果四边形是矩形时,该等式成立.故不一定正确.
故选:.
【点睛】
本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
9、D
【解析】
根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
【详解】
解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
故选:D.
【点睛】
本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
10、D
【解析】
因为=,
所以的倒数是.
故选D.
11、D
【解析】
根据一次函数的性质结合题目中的条件解答即可.
【详解】
解:由题可得,水深与注水量之间成正比例关系,
∴随着水的深度变高,需要的注水量也是均匀升高,
∴水瓶的形状是圆柱,
故选:D.
【点睛】
此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.
12、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、4
【解析】
利用平方差公式计算.
【详解】
解:原式=()2-()2
=7-3
=4.
故答案为:4.
【点睛】
本题考查了二次根式的混合运算.
14、70°.
【解析】
由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.
【详解】
∵∠AEC=40°,
∴∠AED=180°﹣∠AEC=140°,
∵EF平分∠AED,
∴,
又∵AB∥CD,
∴∠AFE=∠DEF=70°.
故答案为:70
【点睛】
本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.
15、1
【解析】
根据弧长公式l=代入求解即可.
【详解】
解:∵,
∴.
故答案为1.
【点睛】
本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.
16、x+1
【解析】
分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.
详解:解:原式=÷
=•(x+1)(x﹣1)
=x+1,
故答案为x+1.
点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.
17、3(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
18、①②③⑤
【解析】
根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
【详解】
由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,
∵
∴2a+b>0,
故③正确,
由图象可得顶点纵坐标小于﹣2,则④错误,
当x=1时,y=a+b+c<0,故⑥错误
故答案为:①②③⑤
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)45°;(2)26°.
【解析】
(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
【详解】
(1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
∴∠ABD=45°;
(2)连接OD,
∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一个外角,
∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
【点睛】
本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
20、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。
【解析】
试题分析:
(1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;
(2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.
试题解析:
(1)由已知条件可得:被抽查学生总数为32÷40%=80(人),
∴m%=28÷80×100%=35%,
∴m=35,
A组人数为:80-32-28-8=12(人),
将图形统计图补充完整如下图所示:
(2)由题意可得:900×(12÷80×100%)=900×15%=135(人).
答:全校学生对“食品安全知识”非常了解的人数为135人.
21、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【解析】
(1)由待定系数法即可得到函数的解析式;
(2)根据销售量×每千克利润=总利润列出方程求解即可;
(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
【详解】
(1)设y与x之间的函数关系式为:y=kx+b,
把(2,120)和(4,140)代入得,,
解得:,
∴y与x之间的函数关系式为:y=10x+100;
(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
解得:x=1或x=9,
∵为了让顾客得到更大的实惠,
∴x=9,
答:这种干果每千克应降价9元;
(3)该干果每千克降价x元,商贸公司获得利润是w元,
根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
∴w=﹣10(x﹣5)2+2250,
∵a=-10,∴当x=5时,
故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【点睛】
本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
22、(1)证明见解析;(2)BH=.
【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;
(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.
【详解】
(1)连接OC,
∵AB是⊙O的直径,点C是的中点,
∴∠AOC=90°,
∵OA=OB,CD=AC,
∴OC是△ABD是中位线,
∴OC∥BD,
∴∠ABD=∠AOC=90°,
∴AB⊥BD,
∵点B在⊙O上,
∴BD是⊙O的切线;
(2)由(1)知,OC∥BD,
∴△OCE∽△BFE,
∴,
∵OB=2,
∴OC=OB=2,AB=4,,
∴,
∴BF=3,
在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,
∵S△ABF=AB•BF=AF•BH,
∴AB•BF=AF•BH,
∴4×3=5BH,
∴BH=.
【点睛】
此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.
23、2
【解析】
试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.
试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,
当a=1时,原式=14+16﹣1﹣1=2.
24、(1)详见解析;(2)①详见解析;②.
【解析】
(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.
【详解】
解:(1)如图△A′B′C′为所求图形.
(2)①如图:点P为所求点.
②∵△ABP的周长=AB+AP+BP=AB+AP+B''P
∴当AP与PB''共线时,△APB的周长有最小值.
∴△APB的周长的最小值AB+AB''=+3
故答案为 +3
【点睛】
本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.
25、-5
【解析】
根据分式的运算法则以及实数的运算法则即可求出答案.
【详解】
当x=sin30°+2﹣1+时,
∴x=++2=3,
原式=÷==﹣5.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
26、(1)(2)(3)
【解析】
(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.
(3)运用变化规律计算
【详解】
解:(1)a5=;
(2)an=;
(3)a1+a2+a3+a4+…+a100
.
27、(1)B'的坐标为(,3);(1)见解析 ;(3)﹣1.
【解析】
(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,
由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;
(1)证明∠BPA'=90即可;
(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【详解】
(Ⅰ)如图1,设A'B'与x轴交于点H,
∵OA=1,OB=1,∠AOB=90°,
∴∠ABO=∠B'=30°,
∵∠BOB'=α=30°,
∴BO∥A'B',
∵OB'=OB=1,
∴OH=OB'=,B'H=3,
∴点B'的坐标为(,3);
(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',
∴∠OBB'=∠OA'A=(180°﹣α),
∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,
∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,
即AA'⊥BB';
(Ⅲ)点P纵坐标的最小值为.
如图,作AB的中点M(1,),连接MP,
∵∠APB=90°,
∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).
∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【点睛】
本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.
相关试卷
这是一份2024年广东省惠州市惠阳区中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省惠州市惠阳区永湖中学中考数学模拟试卷(五)(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年广东省惠州市惠阳区中考数学二模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。