年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年甘肃省庆阳市镇原县重点达标名校中考数学模拟精编试卷含解析

    2022年甘肃省庆阳市镇原县重点达标名校中考数学模拟精编试卷含解析第1页
    2022年甘肃省庆阳市镇原县重点达标名校中考数学模拟精编试卷含解析第2页
    2022年甘肃省庆阳市镇原县重点达标名校中考数学模拟精编试卷含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年甘肃省庆阳市镇原县重点达标名校中考数学模拟精编试卷含解析

    展开

    这是一份2022年甘肃省庆阳市镇原县重点达标名校中考数学模拟精编试卷含解析,共28页。试卷主要包含了《语文课程标准》规定,一组数据,计算3–等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.对于一组统计数据1,1,6,5,1.下列说法错误的是(  )
    A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是6
    2.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
    A. B. C. D.
    3.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是(  )
    A.
    B.
    C.
    D.
    4.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为(  )
    A.26×105 B.2.6×102 C.2.6×106 D.260×104
    5.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    6.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为(  )
    A.﹣2 B.0 C.1 D.3
    7.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
    A. B. C. D.
    8.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )
    A.5,5 B.5,6 C.6,5 D.6,6
    9.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为(  )
    A. B.2 C. D.
    10.计算3–(–9)的结果是( )
    A.12 B.–12 C.6 D.–6
    11.下列各数中比﹣1小的数是(  )
    A.﹣2 B.﹣1 C.0 D.1
    12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
    A. B.1 C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.

    14.若式子在实数范围内有意义,则x的取值范围是   .
    15.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (1)AB的长等于____;
    (2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______

    16.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____

    17.已知抛物线与直线在之间有且只有一个公共点,则的取值范围是__.
    18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE

    20.(6分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
    x
    ﹣1
    0
    1
    ax2


    1
    ax2+bx+c
    7
    2

    (1)求抛物线y=ax2+bx+c的表达式
    (2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
    (3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.

    21.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
    (1)求此抛物线的解析式及顶点D的坐标;
    (2)点M是抛物线上的动点,设点M的横坐标为m.
    ①当∠MBA=∠BDE时,求点M的坐标;
    ②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.

    22.(8分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.

    23.(8分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
    (1)把△ABC绕点A旋转到图1,BD,CE的关系是   (选填“相等”或“不相等”);简要说明理由;
    (2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=   ,简要说明计算过程;
    (3)在(2)的条件下写出旋转过程中线段PD的最小值为   ,最大值为   .

    24.(10分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.

    (1)若C是半径OB中点,求的正弦值;
    (2)若E是弧AB的中点,求证:;
    (3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
    25.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,与函数的图象的一个交点为.
    (1)求,,的值;
    (2)将线段向右平移得到对应线段,当点落在函数的图象上时,求线段扫过的面积.

    26.(12分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
    (1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
    (2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
    (3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

    27.(12分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.
    (1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是   ;
    (2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据中位数、众数、方差等的概念计算即可得解.
    【详解】
    A、这组数据中1都出现了1次,出现的次数最多,所以这组数据的众数为1,此选项正确;
    B、由平均数公式求得这组数据的平均数为4,故此选项正确;
    C、S2= [(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此选项正确;
    D、将这组数据按从大到校的顺序排列,第1个数是1,故中位数为1,故此选项错误;
    故选D.
    考点:1.众数;2.平均数;1.方差;4.中位数.
    2、A
    【解析】
    圆柱体的底面积为:π×()2,
    ∴矿石的体积为:π×()2h= .
    故答案为.
    3、C
    【解析】
    分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.
    详解:
    由被开方数越大算术平方根越大,


    故选C.
    点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.
    4、C
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    260万=2600000=.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    5、C
    【解析】
    由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.
    【详解】
    解:由题意知,△AFB≌△AED
    ∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
    ∴AE⊥AF,故此选项①正确;
    ∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;
    ∵△AEF是等腰直角三角形,有EF:AF=:1,故此选项②正确;
    ∵△AEF与△AHF不相似,
    ∴AF2=FH·FE不正确.故此选项③错误,
    ∵HB//EC,
    ∴△FBH∽△FCE,
    ∴FB:FC=HB:EC,故此选项⑤正确.
    故选:C
    【点睛】
    本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.
    6、B
    【解析】
    解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.
    【详解】
    由关于y的不等式组,可整理得
    ∵该不等式组解集无解,
    ∴2a+4≥﹣2
    即a≥﹣3
    又∵得x=
    而关于x的分式方程有负数解
    ∴a﹣4<1
    ∴a<4
    于是﹣3≤a<4,且a 为整数
    ∴a=﹣3、﹣2、﹣1、1、1、2、3
    则符合条件的所有整数a的和为1.
    故选B.
    【点睛】
    本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
    7、A
    【解析】
    试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
    解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
    从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
    综上所知这个几何体是圆柱.
    故选A.
    考点:由三视图判断几何体.
    8、A
    【解析】
    试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.
    平均数为:×(6+3+4+1+7)=1,
    按照从小到大的顺序排列为:3,4,1,6,7,所以,中位数为:1.
    故选A.
    考点:中位数;算术平均数.
    9、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,

    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
    10、A
    【解析】
    根据有理数的减法,即可解答.
    【详解】

    故选A.
    【点睛】
    本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
    反数.
    11、A
    【解析】
    根据两个负数比较大小,绝对值大的负数反而小,可得答案.
    【详解】
    解:A、﹣2<﹣1,故A正确;
    B、﹣1=﹣1,故B错误;
    C、0>﹣1,故C错误;
    D、1>﹣1,故D错误;
    故选:A.
    【点睛】
    本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.
    12、A
    【解析】
    【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
    【详解】x(x+1)+ax=0,
    x2+(a+1)x=0,
    由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
    解得:a1=a2=-1,
    故选A.
    【点睛】本题考查一元二次方程根的情况与判别式△的关系:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (3)△<0⇔方程没有实数根.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
    【详解】
    ∵AE=EC,BD=CD,
    ∴DE∥AB,DE=AB,
    ∴△EDC∽△ABC,
    ∴=,
    故答案是:.
    【点睛】
    考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
    14、.
    【解析】
    根据二次根式被开方数必须是非负数的条件,
    要使在实数范围内有意义,必须.
    故答案为
    15、; 答案见解析.
    【解析】
    (1)AB==.
    故答案为.
    (2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.

    理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.
    16、.
    【解析】
    解:令AE=4x,BE=3x,
    ∴AB=7x.
    ∵四边形ABCD为平行四边形,
    ∴CD=AB=7x,CD∥AB,
    ∴△BEF∽△DCF.
    ∴,
    ∴DF=
    【点睛】
    本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
    17、或.
    【解析】
    联立方程可得,设,从而得出的图象在上与x轴只有一个交点,当△时,求出此时m的值;当△时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;
    【详解】
    联立
    可得:,
    令,
    抛物线与直线在之间有且只有一个公共点,
    即的图象在上与x轴只有一个交点,
    当△时,
    即△
    解得:,
    当时,

    当时,
    ,满足题意,
    当△时,
    令,,
    令,,


    令代入
    解得:,
    此方程的另外一个根为:,
    故也满足题意,
    故的取值范围为:或
    故答案为: 或.
    【点睛】
    此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键.
    18、
    【解析】
    解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
    ∴DG=DC﹣CG=1,则AG==,
    ∵ ,∠ABG=∠CBE,
    ∴△ABG∽△CBE,
    ∴,
    解得,CE=,
    故答案为.

    【点睛】
    本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析.
    【解析】
    易证△DAC≌△CEF,即可得证.
    【详解】
    证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,
    ∴∠DCA=∠CFE,在△DAC和△CEF中:,
    ∴△DAC≌△CEF(AAS),
    ∴AD=CE,AC=EF,
    ∴AE=AD+EF
    【点睛】
    此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.
    20、 (1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.
    【解析】
    (1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
    (2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
    (1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.
    【详解】
    (1)当x=1时,y=ax2=1,
    解得:a=1;
    将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
    ,解得:,
    ∴抛物线的表达式为y=x2﹣4x+2;
    (2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,
    ∴点A到抛物线的距离与点B到抛物线的距离比为2:1.
    ∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
    ∴点B到抛物线的距离为1,
    ∴点B的横坐标为1+2=5,
    ∴点B的坐标为(5,7).
    (1)∠BAD和∠DCO互补,理由如下:
    当x=0时,y=x2﹣4x+2=2,
    ∴点A的坐标为(0,2),
    ∵y=x2﹣4x+2=(x﹣2)2﹣2,
    ∴点D的坐标为(2,﹣2).
    过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
    设直线BD的表达式为y=mx+n(m≠0),
    将B(5,7)、D(2,﹣2)代入y=mx+n,
    ,解得:,
    ∴直线BD的表达式为y=1x﹣2.
    当y=2时,有1x﹣2=2,
    解得:x=,
    ∴点N的坐标为(,2).
    ∵A(0,2),B(5,7),D(2,﹣2),
    ∴AB=5,BD=1,BN=,
    ∴==.
    又∵∠ABD=∠NBA,
    ∴△ABD∽△NBA,
    ∴∠ANB=∠DAB.
    ∵∠ANB+∠AND=120°,
    ∴∠DAB+∠DCO=120°,
    ∴∠BAD和∠DCO互补.

    【点睛】
    本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.
    21、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
    【详解】
    解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
    得到,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3,
    ∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
    ∴顶点D坐标(1,4);
    (2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),

    ∴MG=|﹣m2+2m+3|,BG=3﹣m,
    ∴tan∠MBA=,
    ∵DE⊥x轴,D(1,4),
    ∴∠DEB=90°,DE=4,OE=1,
    ∵B(3,0),
    ∴BE=2,
    ∴tan∠BDE==,
    ∵∠MBA=∠BDE,
    ∴=,
    当点M在x轴上方时, =,
    解得m=﹣或3(舍弃),
    ∴M(﹣,),
    当点M在x轴下方时, =,
    解得m=﹣或m=3(舍弃),
    ∴点M(﹣,﹣),
    综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
    ②如图中,∵MN∥x轴,

    ∴点M、N关于抛物线的对称轴对称,
    ∵四边形MPNQ是正方形,
    ∴点P是抛物线的对称轴与x轴的交点,即OP=1,
    易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
    当﹣m2+2m+3=1﹣m时,解得m=,
    当﹣m2+2m+3=m﹣1时,解得m=,
    ∴满足条件的m的值为或.
    【点睛】
    本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
    22、见解析,
    【解析】
    要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
    【详解】
    证明:由折叠得:BC=EC,∠B=∠AEC,
    ∵矩形ABCD,
    ∴BC=AD,∠B=∠ADC=90°,
    ∴EC=DA,∠AEC=∠ADC=90°,
    又∵∠AFD=∠CFE,
    ∴△ADF≌△CEF (AAS)
    ∴∠DAE=∠ECD.
    【点睛】
    本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
    23、(1)BD,CE的关系是相等;(2)或;(3)1,1
    【解析】
    分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
    (2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,进而得到PD=;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=;
    (3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.
    详解:(1)BD,CE的关系是相等.
    理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
    ∴BA=CA,∠BAD=∠CAE,DA=EA,
    ∴△ABD≌△ACE,
    ∴BD=CE;
    故答案为相等.
    (2)作出旋转后的图形,若点C在AD上,如图2所示:

    ∵∠EAC=90°,
    ∴CE=,
    ∵∠PDA=∠AEC,∠PCD=∠ACE,
    ∴△PCD∽△ACE,
    ∴,
    ∴PD=;
    若点B在AE上,如图2所示:

    ∵∠BAD=90°,
    ∴Rt△ABD中,BD=,BE=AE﹣AB=2,
    ∵∠ABD=∠PBE,∠BAD=∠BPE=90°,
    ∴△BAD∽△BPE,
    ∴,即,
    解得PB=,
    ∴PD=BD+PB=+=,
    故答案为或;
    (3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
    如图3所示,分两种情况讨论:

    在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
    ①当小三角形旋转到图中△ACB的位置时,
    在Rt△ACE中,CE==4,
    在Rt△DAE中,DE=,
    ∵四边形ACPB是正方形,
    ∴PC=AB=3,
    ∴PE=3+4=1,
    在Rt△PDE中,PD=,
    即旋转过程中线段PD的最小值为1;
    ②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,
    此时,DP'=4+3=1,
    即旋转过程中线段PD的最大值为1.
    故答案为1,1.
    点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.
    24、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或.
    【解析】
    (2)先求出OCOB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;
    (2)先判断出,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;
    (3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
    ②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D和点O重合,即可得出结论.
    【详解】
    (2)∵C是半径OB中点,∴OCOB=2.
    ∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.
    在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;
    (2)如图2,连接AE,CE.
    ∵DE是AC垂直平分线,∴AE=CE.
    ∵E是弧AB的中点,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.
    连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
    ∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO•BC;
    (3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:
    ①当CD=CE时.
    ∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;
    ②当CD=DE时.
    ∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
    连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B重合,∴CD=2.
    综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或.

    【点睛】
    本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.
    25、(1)m=4, n=1,k=3.(2)3.
    【解析】
    (1) 把点,分别代入直线中即可求出m=4,再把代入直线即可求出n=1.把代入函数求出k即可;
    (2)由(1)可求出点B的坐标为(0,4),点B‘是由点B向右平移得到,故点B’的纵坐标为4,把它代入反比例函数解析式即可求出它的横坐标,根据平移的知识可知四边形AA’B’B是平行四边形,再根据平行四边形的面积计算公式计算即可.
    【详解】
    解:(1)把点,分别代入直线中得:
    -4+m=0,
    m=4,
    ∴直线解析式为.
    把代入得:
    n=-3+4=1.
    ∴点C的坐标为(3,1)
    把(3,1)代入函数得:

    解得:k=3.
    ∴m=4, n=1,k=3.
    (2)如图,设点B的坐标为(0,y)则y=-0+4=4
    ∴点B的坐标是(0,4)
    当y=4时,
    解得,
    ∴点B’( ,4)
    ∵A’,B’是由A,B向右平移得到,
    ∴四边形AA’B’B是平行四边形,
    故四边形AA’B’B的面积=4=3.

    【点睛】
    本题考查了一次函数与反比例函数的交点问题及函数的平移,利用数形结合思想作出图形是解题的关键.
    26、(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【解析】
    【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
    (2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
    (3)先判断出△AEP≌△FBP,即可得出结论.
    【详解】(1)依题意作出图形如图①所示;

    (2)EB是平分∠AEC,理由:
    ∵四边形ABCD是矩形,
    ∴∠C=∠D=90°,CD=AB=2,BC=AD=,
    ∵点E是CD的中点,
    ∴DE=CE=CD=1,
    在△ADE和△BCE中,,
    ∴△ADE≌△BCE,
    ∴∠AED=∠BEC,
    在Rt△ADE中,AD=,DE=1,
    ∴tan∠AED==,
    ∴∠AED=60°,
    ∴∠BCE=∠AED=60°,
    ∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
    ∴BE平分∠AEC;
    (3)∵BP=2CP,BC==,
    ∴CP=,BP=,
    在Rt△CEP中,tan∠CEP==,
    ∴∠CEP=30°,
    ∴∠BEP=30°,
    ∴∠AEP=90°,
    ∵CD∥AB,
    ∴∠F=∠CEP=30°,
    在Rt△ABP中,tan∠BAP==,
    ∴∠PAB=30°,
    ∴∠EAP=30°=∠F=∠PAB,
    ∵CB⊥AF,
    ∴AP=FP,
    ∴△AEP≌△FBP,
    ∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
    变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.
    27、(1);(2)
    【解析】
    (1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;
    (2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.
    【详解】
    解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,
    ∴甲投放了一袋是餐厨垃圾的概率是,
    故答案为:;
    (2)记这四类垃圾分别为A、B、C、D,
    画树状图如下:

    由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,
    所以投放的两袋垃圾同类的概率为=.
    【点睛】
    本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析:

    这是一份广西龙胜县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,点P等内容,欢迎下载使用。

    甘肃省镇原县重点达标名校2021-2022学年中考数学模拟试题含解析:

    这是一份甘肃省镇原县重点达标名校2021-2022学年中考数学模拟试题含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,下列算式的运算结果正确的是等内容,欢迎下载使用。

    甘肃省庆阳市镇原县重点达标名校2022年中考数学考前最后一卷含解析:

    这是一份甘肃省庆阳市镇原县重点达标名校2022年中考数学考前最后一卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,估计的值在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map