![2022年广东省湛江市徐闻县重点中学中考数学模试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13337726/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年广东省湛江市徐闻县重点中学中考数学模试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13337726/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年广东省湛江市徐闻县重点中学中考数学模试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13337726/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年广东省湛江市徐闻县重点中学中考数学模试卷含解析
展开
这是一份2022年广东省湛江市徐闻县重点中学中考数学模试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,不等式3x<2,实数的相反数是,运用乘法公式计算,五个新篮球的质量等内容,欢迎下载使用。
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
A.b≥1.25B.b≥1或b≤﹣1C.b≥2D.1≤b≤2
2.将不等式组的解集在数轴上表示,下列表示中正确的是( )
A.B.C.D.
3.如图所示的图形,是下面哪个正方体的展开图( )
A.B.C.D.
4.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800xB.1000(13﹣x)=800x
C.1000(26﹣x)=2×800xD.1000(26﹣x)=800x
5.不等式3x<2(x+2)的解是( )
A.x>2B.x<2C.x>4D.x<4
6.实数的相反数是( )
A.B.C.D.
7.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是( )
A.点A与点BB.点A与点DC.点B与点DD.点B与点C
8.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m<3B.m>3C.m≤3D.m≥3
9.运用乘法公式计算(3﹣a)(a+3)的结果是( )
A.a2﹣6a+9B.a2﹣9C.9﹣a2D.a2﹣3a+9
10.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )
A.﹣2.5B.﹣0.6C.+0.7D.+5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).
12.把抛物线y=x2﹣2x+3沿x轴向右平移2个单位,得到的抛物线解析式为 .
13.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.
14.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.
15.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.
16.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.
三、解答题(共8题,共72分)
17.(8分)解不等式组:并写出它的所有整数解.
18.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
(1)画出△A1B1C1
(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
(3)在(2)的条件下求BC扫过的面积.
19.(8分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
(1)求甲、乙2名学生在不同书店购书的概率;
(2)求甲、乙、丙3名学生在同一书店购书的概率.
20.(8分)综合与探究
如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
①当点G与点D重合时,求平移距离m的值;
②用含x的式子表示平移距离m,并求m的最大值;
(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.
21.(8分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.
(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)
22.(10分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.
23.(12分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
24.如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.
当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,
解得b≥.
当抛物线与x轴的交点的横坐标均大于等于0时,
设抛物线与x轴的交点的横坐标分别为x1,x2,
则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,
∴此种情况不存在.
∴b≥.
2、B
【解析】
先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.
解:不等式可化为:,即.
∴在数轴上可表示为.故选B.
“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
3、D
【解析】
根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
【详解】
A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
故选D.
【点睛】
本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
4、C
【解析】
试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
【详解】
.故选C.
解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
5、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
6、D
【解析】
根据相反数的定义求解即可.
【详解】
的相反数是-,
故选D.
【点睛】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
7、A
【解析】
试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
故选A.
考点:1.倒数的定义;2.数轴.
8、A
【解析】
分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.
详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
∴△=(-2)2-4m>0,
∴m<3,
故选A.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
9、C
【解析】
根据平方差公式计算可得.
【详解】
解:(3﹣a)(a+3)=32﹣a2=9﹣a2,
故选C.
【点睛】
本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.
10、B
【解析】
求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
【详解】
解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
∵5>3.5>2.5>0.7>0.6,
∴最接近标准的篮球的质量是-0.6,
故选B.
【点睛】
本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、②③.
【解析】
试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,
∴△ADE∽△ABD;
故①错误;
②作AG⊥BC于G,
∵∠ADE=∠B=α,tan∠α=,
∴,
∴,
∴csα=,
∵AB=AC=15,
∴BG=1,
∴BC=24,
∵CD=9,
∴BD=15,
∴AC=BD.
∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,
∴∠EDB=∠DAC,
在△ACD与△DBE中,
,
∴△ACD≌△BDE(ASA).
故②正确;
③当∠BED=90°时,由①可知:△ADE∽△ABD,
∴∠ADB=∠AED,
∵∠BED=90°,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且tan∠α=,AB=15,
∴
∴BD=1.
当∠BDE=90°时,易证△BDE∽△CAD,
∵∠BDE=90°,
∴∠CAD=90°,
∵∠C=α且csα=,AC=15,
∴csC=,
∴CD=.
∵BC=24,
∴BD=24-=
即当△DCE为直角三角形时,BD=1或.
故③正确;
④易证得△BDE∽△CAD,由②可知BC=24,
设CD=y,BE=x,
∴,
∴,
整理得:y2-24y+144=144-15x,
即(y-1)2=144-15x,
∴0<x≤,
∴0<BE≤.
故④错误.
故正确的结论为:②③.
考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.
12、y=(x﹣3)2+2
【解析】
根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.
【详解】
解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2).
向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x﹣3)2+2,
故答案为:y=(x﹣3)2+2.
【点睛】
此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
13、
【解析】
连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题
【详解】
解:连接CD,
∵DE垂直平分AC,
∴AD=CD,
∴∠DCA=∠BAC=45°,
∴△ADC是等腰直角三角形,
∴,∠ADC=90°,
∴∠BDC=90°,
∵∠ACB=75°,
∴∠BCD=30°,
∴BC= ,
故答案为.
【点睛】
此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形
14、甲.
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.
【详解】
∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,
∴甲的方差大于乙的方差.
故答案为:甲.
【点睛】
本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.
15、
【解析】
根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.
【详解】
根据图示可得,
故答案是:.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.
16、1
【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴当m﹣n=4时,原式=2×42=1.故答案为:1.
三、解答题(共8题,共72分)
17、原不等式组的解集为,它的所有整数解为0,1.
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.
【详解】
解:,
解不等式①,得,
解不等式②,得x<2,
∴原不等式组的解集为,
它的所有整数解为0,1.
【点睛】
本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
18、(1)见解析;(2)见解析;(3).
【解析】
(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;
(2)根据图形旋转的性质画出旋转后的图形即可;
(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.
【详解】
解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,
∴△ABC向右平移6个单位,向上平移了一个单位,
∴A1(4,4),B1(2,0),C1(8,1);
顺次连接A1,B1,C1三点得到所求的△A1B1C1
(2)如图所示:△A2B2C即为所求三角形.
(3)BC的长为:
BC扫过的面积
【点睛】
本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
19、(1)P=;(2)P=.
【解析】
试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:
从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
(2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:
从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
20、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
【解析】
(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
【详解】
解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
解得:,
∴抛物线的表达式为y=﹣x3+x+2,
把E(﹣4,y)代入得:y=﹣6,
∴点E的坐标为(﹣4,﹣6).
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
解得:,
∴直线BD的表达式为y=x﹣2.
把x=0代入y=x﹣2得:y=﹣2,
∴D(0,﹣2).
当点G与点D重合时,G的坐标为(0,﹣2).
∵GF∥x轴,
∴F的纵坐标为﹣2.
将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
解得:x=+3或x=﹣+3.
∵﹣4<x<4,
∴点F的坐标为(﹣+3,﹣2).
∴m=FG=﹣3.
②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
∵﹣<0,
∴m有最大值,
当x=0时,m的最大值为4.
(2)当点F在x轴的左侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
解得:x=﹣3或x=4(舍去),
∴点F的坐标为(﹣3,0).
当点F在x轴的右侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
解得:x=﹣3或x=﹣﹣3(舍去),
∴点F的坐标为(﹣3,).
综上所述,点F的坐标为(﹣3,0)或(﹣3,).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
21、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米
【解析】
分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.
详解:过P作PF⊥BD于F,作PE⊥AB于E,
∵斜坡的坡度i=5:1,
设PF=5x,CF=1x,
∵四边形BFPE为矩形,
∴BF=PEPF=BE.
在RT△ABC中,BC=90,
tan∠ACB=,
∴AB=tan63.4°×BC≈2×90=180,
∴AE=AB-BE=AB-PF=180-5x,
EP=BC+CF≈90+10x.
在RT△AEP中,
tan∠APE=,
∴x=,
∴PF=5x=.
答:此人所在P的铅直高度约为14.3米.
由(1)得CP=13x,
∴CP=13×37.1,BC+CP=90+37.1=17.1.
答:从P到点B的路程约为17.1米.
点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.
22、(1)证明见解析;(2)AB、AD的长分别为2和1.
【解析】
(1)证Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.证四边形ABCD是平行四边形,又,故四边形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x,则OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.
【详解】
(1)证明:∵AB⊥OM于B,DE⊥ON于E,
∴.
在Rt△ABO与Rt△DEA中,
∵∴Rt△ABO≌Rt△DEA(HL).
∴∠AOB=∠DAE.∴AD∥BC.
又∵AB⊥OM,DC⊥OM,∴AB∥DC.
∴四边形ABCD是平行四边形.
∵,∴四边形ABCD是矩形;
(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.
设AD=x,则OA=x,AE=OE-OA=9-x.
在Rt△DEA中,由得:
,解得.
∴AD=1.即AB、AD的长分别为2和1.
【点睛】
矩形的判定和性质;掌握判断定证三角形全等是关键.
23、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).
【解析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;
(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;
(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:
①当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;
②当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.
【详解】
解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),
∴,解得,
故抛物线的函数解析式为y=x2﹣2x﹣3;
(2)令x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
则点C的坐标为(3,0),
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴点E坐标为(1,﹣4),
设点D的坐标为(0,m),作EF⊥y轴于点F(如下图),
∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,
∵DC=DE,
∴m2+9=m2+8m+16+1,解得m=﹣1,
∴点D的坐标为(0,﹣1);(3)
∵点C(3,0),D(0,﹣1),E(1,﹣4),
∴CO=DF=3,DO=EF=1,
根据勾股定理,CD===,
在△COD和△DFE中,
∵,
∴△COD≌△DFE(SAS),
∴∠EDF=∠DCO,
又∵∠DCO+∠CDO=90°,
∴∠EDF+∠CDO=90°,
∴∠CDE=180°﹣90°=90°,
∴CD⊥DE,①当OC与CD是对应边时,
∵△DOC∽△PDC,
∴,即=,
解得DP=,
过点P作PG⊥y轴于点G,
则,即,
解得DG=1,PG=,
当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,
所以点P(﹣,0),
当点P在点D的右边时,OG=DO+DG=1+1=2,
所以,点P(,﹣2);
②当OC与DP是对应边时,
∵△DOC∽△CDP,
∴,即=,
解得DP=3,
过点P作PG⊥y轴于点G,
则,即,
解得DG=9,PG=3,
当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,
所以,点P的坐标是(﹣3,8),
当点P在点D的右边时,OG=OD+DG=1+9=10,
所以,点P的坐标是(3,﹣10),
综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).
考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.
24、
【解析】
过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,
∵,
∴AD====x,
由AD+BD=AB可得x+x=10,
解得:x=5﹣5,
答:飞机飞行的高度为(5﹣5)km.
相关试卷
这是一份2023年广东省湛江市麻章区中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年广东省湛江市赤坎区中考数学三模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年广东省湛江市遂溪县中考数学三模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。