年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析

    2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析第1页
    2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析第2页
    2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022年广东省珠海市达标名校中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列因式分解正确的是,计算6m3÷的结果是,3的倒数是等内容,欢迎下载使用。
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
    一、选择题(共10小题,每小题3分,共30分)
    1.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是( )
    A.3B.﹣3C.6D.﹣6
    2.计算1+2+22+23+…+22010的结果是( )
    A.22011–1B.22011+1
    C.D.
    3.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为( )
    A.2B.﹣2C.4D.﹣4
    4.下列因式分解正确的是( )
    A.x2+9=(x+3)2B.a2+2a+4=(a+2)2
    C.a3-4a2=a2(a-4)D.1-4x2=(1+4x)(1-4x)
    5.计算6m3÷(-3m2)的结果是( )
    A.-3mB.-2mC.2mD.3m
    6.将5570000用科学记数法表示正确的是( )
    A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×108
    7.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是( )
    A.29.8×109B.2.98×109C.2.98×1010D.0.298×1010
    8.3的倒数是( )
    A.B.C.D.
    9.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1.关于这组数据说法错误的是( )
    A.极差是20B.中位数是91C.众数是1D.平均数是91
    10.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
    A.16B.18C.20D.24
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知且,则=__________.
    12.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.
    13.已知x1,x2是方程x2-3x-1=0的两根,则=______.
    14.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1= ▲ .
    15.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.
    16.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为_____.
    三、解答题(共8题,共72分)
    17.(8分)试探究:
    小张在数学实践活动中,画了一个△ABC,∠ACB=90°,BC=1,AC=2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE= ;此时小张发现AE2=AC•EC,请同学们验证小张的发现是否正确.
    拓展延伸:
    小张利用图1中的线段AC及点E,构造AE=EF=FC,连接AF,得到图2,试完成以下问题:
    (1)求证:△ACF∽△FCE;
    (2)求∠A的度数;
    (3)求cs∠A的值;
    应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长.
    18.(8分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:
    已知:如图,直线l和直线l外一点A
    求作:直线AP,使得AP∥l
    作法:如图
    ①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.
    ②连接AC,AB,延长BA到点D;
    ③作∠DAC的平分线AP.
    所以直线AP就是所求作的直线
    根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)
    完成下面的证明
    证明:∵AB=AC,
    ∴∠ABC=∠ACB (填推理的依据)
    ∵∠DAC是△ABC的外角,
    ∴∠DAC=∠ABC+∠ACB (填推理的依据)
    ∴∠DAC=2∠ABC
    ∵AP平分∠DAC,
    ∴∠DAC=2∠DAP
    ∴∠DAP=∠ABC
    ∴AP∥l (填推理的依据)
    19.(8分)计算:(﹣1)4﹣2tan60°+ .
    20.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
    特例探索
    (1)如图1,当∠ABE=45°,c=时,a= ,b= ;
    如图2,当∠ABE=10°,c=4时,a= ,b= ;
    归纳证明
    (2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;
    拓展应用
    (1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=1.求AF的长.
    21.(8分)如图,分别以线段AB两端点A,B为圆心,以大于AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.
    (1)判断四边形ACBD的形状,并说明理由;
    (2)求证:ME=AD.
    22.(10分)在平面直角坐标系 xOy 中,抛物线 y=ax2﹣4ax+3a﹣2(a≠0)与 x轴交于 A,B 两(点 A 在点 B 左侧).
    (1)当抛物线过原点时,求实数 a 的值;
    (2)①求抛物线的对称轴;
    ②求抛物线的顶点的纵坐标(用含 a 的代数式表示);
    (3)当 AB≤4 时,求实数 a 的取值范围.
    23.(12分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.
    (1)求线段AB的表达式,并写出自变量x的取值范围;
    (2)求乙的步行速度;
    (3)求乙比甲早几分钟到达终点?
    24.如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
    求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.
    考点:反比例函数系数k的几何意义.
    2、A
    【解析】
    可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.
    【详解】
    设S=1+2+22+23+…+22010①
    则2S=2+22+23+…+22010+22011②
    ②-①得S=22011-1.
    故选A.
    【点睛】
    本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.
    3、D
    【解析】
    首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值
    【详解】
    解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
    ∴∠ACO=∠ODB=90°,
    ∴∠OBD+∠BOD=90°,
    ∵∠AOB=90°,
    ∴∠BOD+∠AOC=90°,
    ∴∠OBD=∠AOC,
    ∴△OBD∽△AOC,
    又∵∠AOB=90°,tan∠BAO= ,
    ∴=,
    ∴ = ,即 ,
    解得k=±4,
    又∵k<0,
    ∴k=-4,
    故选:D.
    【点睛】
    此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
    4、C
    【解析】
    试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)
    故选C,考点:因式分解
    【详解】
    请在此输入详解!
    5、B
    【解析】
    根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
    【详解】
    6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
    故选B.
    6、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.
    【详解】
    5570000=5.57×101所以B正确
    7、B
    【解析】
    根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.
    【详解】
    29.8亿用科学记数法表示为: 29.8亿=2980000000=2.98×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、C
    【解析】
    根据倒数的定义可知.
    解:3的倒数是.
    主要考查倒数的定义,要求熟练掌握.需要注意的是:
    倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
    倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    9、D
    【解析】
    试题分析:因为极差为:1﹣78=20,所以A选项正确;
    从小到大排列为:78,85,91,1,1,中位数为91,所以B选项正确;
    因为1出现了两次,最多,所以众数是1,所以C选项正确;
    因为,所以D选项错误.
    故选D.
    考点:①众数②中位数③平均数④极差.
    10、B
    【解析】
    【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.
    【详解】∵EF∥BC,
    ∴△AEF∽△ABC,
    ∵AB=3AE,
    ∴AE:AB=1:3,
    ∴S△AEF:S△ABC=1:9,
    设S△AEF=x,
    ∵S四边形BCFE=16,
    ∴,
    解得:x=2,
    ∴S△ABC=18,
    故选B.
    【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:根据相似三角形的面积比等于相似比的平方求解即可.
    详解:∵△ABC∽△A′B′C′,
    ∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,
    ∴AB:A′B′=1:.
    点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.
    12、1.
    【解析】
    试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.
    考点:根与系数的关系.
    13、﹣1.
    【解析】
    试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
    14、
    【解析】
    连接BE,
    ∵在线段AC同侧作正方形ABMN及正方形BCEF,
    ∴BE∥AM.∴△AME与△AMB同底等高.
    ∴△AME的面积=△AMB的面积.
    ∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
    ∴当n≥2时,
    15、5200
    【解析】
    设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得:

    解得
    所以甲到学校距离为2400米,乙到学校距离为6300米,
    所以甲的家和乙的家相距8700米.
    故答案是:8700.
    【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息.
    16、
    【解析】
    设AB=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.
    【详解】
    ∵△BCD∽△BAC,
    ∴=,
    设AB=x,
    ∴22=x,
    ∵x>0,
    ∴x=4,
    ∴AC=AD=4-1=3,
    ∵△BCD∽△BAC,
    ∴==,
    ∴CD=.
    故答案为
    【点睛】
    本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.
    三、解答题(共8题,共72分)
    17、(1)小张的发现正确;(2)详见解析;(3)∠A=36°;(4)
    【解析】
    尝试探究:根据勾股定理计算即可;
    拓展延伸:(1)由AE2=AC•EC,推出 ,又AE=FC,推出 ,即可解问题;
    (2)利用相似三角形的性质即可解决问题;
    (3)如图,过点F作FM⊥AC交AC于点M,根据cs∠A= ,求出AM、AF即可;
    应用迁移:利用(3)中结论即可解决问题;
    【详解】
    解:尝试探究:﹣1;
    ∵∠ACB=90°,BC=1,AC=2,
    ∴AB=,
    ∴AD=AE=,
    ∵AE2=()2=6﹣2,
    AC•EC=2×[2﹣()]=6﹣ ,
    ∴AE2=AC•EC,
    ∴小张的发现正确;
    拓展延伸:
    (1)∵AE2=AC•EC,

    ∵AE=FC,
    ∴,
    又∵∠C=∠C,
    ∴△ACF∽△FCE;
    (2)∵△ACF∽△FCE,∴∠AFC=∠CEF,
    又∵EF=FC,
    ∴∠C=∠CEF,
    ∴∠AFC=∠C,
    ∴AC=AF,
    ∵AE=EF,
    ∴∠A=∠AFE,
    ∴∠FEC=2∠A,
    ∵EF=FC,
    ∴∠C=2∠A,
    ∵∠AFC=∠C=2∠A,
    ∵∠AFC+∠C+∠A=180°,
    ∴∠A=36°;
    (3)如图,过点F作FM⊥AC交AC于点M,
    由尝试探究可知AE= ,
    EC=,
    ∵EF=FC,由(2)得:AC=AF=2,
    ∴ME= ,
    ∴AM= ,
    ∴cs∠A= ;
    应用迁移:
    ∵正十边形的中心角等于 =36°,且是半径为2的圆内接正十边形,
    ∴如图,当点A是圆内接正十边形的圆心,AC和AF都是圆的半径,FC是正十边形的边长时,
    设AF=AC=2,FC=EF=AE=x,
    ∵△ACF∽△FCE,
    ∴ ,
    ∴ ,
    ∴ ,
    ∴半径为2的圆内接正十边形的边长为.
    【点睛】
    本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题.
    18、 (1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).
    【解析】
    (1)根据角平分线的尺规作图即可得;
    (2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.
    【详解】
    解:(1)如图所示,直线AP即为所求.
    (2)证明:∵AB=AC,
    ∴∠ABC=∠ACB(等边对等角),
    ∵∠DAC是△ABC的外角,
    ∴∠DAC=∠ABC+∠ACB(三角形外角性质),
    ∴∠DAC=2∠ABC,
    ∵AP平分∠DAC,
    ∴∠DAC=2∠DAP,
    ∴∠DAP=∠ABC,
    ∴AP∥l(同位角相等,两直线平行),
    故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).
    【点睛】
    本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.
    19、1
    【解析】
    首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.
    解:原式==1.
    “点睛”此题主要考查了实数运算,正确化简各数是解题关键.
    ,
    20、(1)2,2;2,2;(2)+=5;(1)AF=2.
    【解析】
    试题分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中线,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;
    (2)猜想:a2+b2=5c2,如图1,连接EF,设∠ABP=α,∴AP=csinα,PB=ccsα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cs2α,∴=c2sin2α+,=+c2cs2α,∴+=+c2cs2α+c2sin2α+,∴a2+b2=5c2;
    (1)如图2,连接AC,EF交于H,AC与BE交于点Q,设BE与AF的交点为P,∵点E、G分别是AD,CD的中点,∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.
    考点:相似形综合题.
    21、(1)四边形ACBD是菱形;理由见解析;(2)证明见解析.
    【解析】
    (1)根据题意得出,即可得出结论;
    (2)先证明四边形是平行四边形,再由菱形的性质得出,证明四边形是矩形,得出对角线相等,即可得出结论.
    【详解】
    (1)解:四边形ACBD是菱形;理由如下:
    根据题意得:AC=BC=BD=AD,
    ∴四边形ACBD是菱形(四条边相等的四边形是菱形);
    (2)证明:∵DE∥AB,BE∥CD,
    ∴四边形BEDM是平行四边形,
    ∵四边形ACBD是菱形,
    ∴AB⊥CD,
    ∴∠BMD=90°,
    ∴四边形ACBD是矩形,
    ∴ME=BD,
    ∵AD=BD,
    ∴ME=AD.
    【点睛】
    本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.
    22、(1)a=;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a 的范围为 a<﹣2 或 a≥.
    【解析】
    (1)把原点坐标代入 y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设 A(m,1),B(n,1),利用抛物线与 x 轴的交点问题,则 m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,利用判别式的意义解得 a>1 或 a<﹣2,再利用根与系数的关系得到 m+n=4,mn= ,然后根据完全平方公式利用 n﹣m≤4 得到(m+n)2﹣4mn≤16,所以 42﹣4•≤16,接着解关于a 的不等式,最后确定a的范围.
    【详解】
    (1)把(1,1)代入 y=ax2﹣4ax+3a﹣2 得 3a﹣2=1,解得 a=;
    (2)①y=a(x﹣2)2﹣a﹣2, 抛物线的对称轴为直线 x=2;
    ②抛物线的顶点的纵坐标为﹣a﹣2;
    (3)设 A(m,1),B(n,1),
    ∵m、n 为方程 ax2﹣4ax+3a﹣2=1 的两根,
    ∴△=16a2﹣4a(3a﹣2)>1,解得 a>1 或 a<﹣2,
    ∴m+n=4,mn=, 而 n﹣m≤4,
    ∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,
    ∴42﹣4• ≤16,
    即≥1,解得 a≥或 a<1.
    ∴a 的范围为 a<﹣2 或 a≥.
    【点睛】
    本题考查了抛物线与 x 轴的交点:把求二次函数 y=ax2+bx+c(a,b,c 是常数,a≠1)与 x 轴的交点坐标问题转化为解关于 x 的一元二次方程.也考查了二次函数的性质.
    23、(1);(2)80米/分;(3)6分钟
    【解析】
    (1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
    (2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
    (3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.
    【详解】
    (1)根据题意得:
    设线段AB的表达式为:y=kx+b (4≤x≤16),
    把(4,240),(16,0)代入得:

    解得:,
    即线段AB的表达式为:y= -20x+320 (4≤x≤16),
    (2)又线段OA可知:甲的速度为:=60(米/分),
    乙的步行速度为:=80(米/分),
    答:乙的步行速度为80米/分,
    (3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
    与终点的距离为:2400-960=1440(米),
    相遇后,到达终点甲所用的时间为:=24(分),
    相遇后,到达终点乙所用的时间为:=18(分),
    24-18=6(分),
    答:乙比甲早6分钟到达终点.
    【点睛】
    本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.
    24、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【解析】
    (1)根据题意得出方程组,求出b、c的值,即可求出答案;
    (2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;
    (3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.
    【详解】
    解:(1)由题意得:,
    解得:,
    ∴抛物线的解析式为y=-x2+2x+2;
    (2)∵由y=-x2+2x+2得:当x=0时,y=2,
    ∴B(0,2),
    由y=-(x-1)2+3得:C(1,3),
    ∵A(3,-1),
    ∴AB=3,BC=,AC=2,
    ∴AB2+BC2=AC2,
    ∴∠ABC=90°,
    ∴△ABC是直角三角形;
    (3)①如图,当点Q在线段AP上时,
    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==1,
    ∴PE=AD=1
    ∵由-x2+2x+2=1得:x=1,
    ∴P(1+,1)或(1-,1),
    ②如图,当点Q在PA延长线上时,
    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=3AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==3,
    ∴PE=3AD=3
    ∵由-x2+2x+2=-3得:x=1±,
    ∴P(1+,-3),或(1-,-3),
    综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【点睛】
    本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.

    相关试卷

    2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。

    2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了下列计算正确的是,下列命题中,真命题是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    2022年广东省佛山市超盈实验中学达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年广东省佛山市超盈实验中学达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,关于x的方程等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map