2022年贵州省毕节市七星关区第三实验校中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cm B.4cm C.5cm D.6cm
2.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对 B.2对 C.3对 D.4对
3.如图,若AB∥CD,CD∥EF,那么∠BCE=( )
A.∠1+∠2 B.∠2-∠1
C.180°-∠1+∠2 D.180°-∠2+∠1
4.对于函数y=,下列说法正确的是( )
A.y是x的反比例函数 B.它的图象过原点
C.它的图象不经过第三象限 D.y随x的增大而减小
5.已知二次函数的与的不符对应值如下表:
|
且方程的两根分别为,,下面说法错误的是( ).
A., B.
C.当时, D.当时,有最小值
6.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是( )
A.线段PB B.线段BC C.线段CQ D.线段AQ
7.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )
A.10° B.12.5° C.15° D.20°
8.如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )
A. B.
C. D.
9.数据”1,2,1,3,1”的众数是( )
A.1 B.1.5 C.1.6 D.3
10.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )
A.米 B.米 C.米 D.米
二、填空题(共7小题,每小题3分,满分21分)
11.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为_____.
12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为 .
13.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.
14.方程组的解一定是方程_____与_____的公共解.
15.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.
16.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
17.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.
三、解答题(共7小题,满分69分)
18.(10分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
19.(5分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣
20.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
21.(10分)计算:(-)-2 – 2()+
22.(10分)如图,已知△ABC.
(1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);
(2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.
23.(12分)先化简,再求值:,其中.
24.(14分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
详解:设CN=xcm,则DN=(8﹣x)cm,
由折叠的性质知EN=DN=(8﹣x)cm,
而EC=BC=4cm,
在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8﹣x)2=16+x2,
整理得16x=48,
所以x=1.
故选:A.
点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
2、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
3、D
【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.
【详解】
解:∵AB∥CD,
∴∠BCD=∠1,
∵CD∥EF,
∴∠DCE=180°-∠2,
∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.
故选:D.
【点睛】
本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.
4、C
【解析】
直接利用反比例函数的性质结合图象分布得出答案.
【详解】
对于函数y=,y是x2的反比例函数,故选项A错误;
它的图象不经过原点,故选项B错误;
它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
故选C.
【点睛】
此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
5、C
【解析】
分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.
【详解】
A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=时,y有最小值,故此选项正确,不合题意.所以选C.
【点睛】
此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.
6、C
【解析】
根据三角形高线的定义即可解题.
【详解】
解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,
故选C.
【点睛】
本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.
7、C
【解析】
试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
∴∠DAC=∠BAD=30°,
∵AD=AE(已知),
∴∠ADE=75°
∴∠EDC=90°-∠ADE=15°.
故选C.
考点:本题主要考查了等腰三角形的性质,三角形内角和定理
点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
8、D
【解析】
找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.
【详解】
解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
左视图有二列,从左往右分别有2,1个正方形;
俯视图有三列,从上往下分别有3,1个正方形,
故选A.
【点睛】
本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.
此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.
9、A
【解析】
众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故选:A.
【点睛】
本题为统计题,考查众数的意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
10、C
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
35000纳米=35000×10-9米=3.5×10-5米.
故选C.
【点睛】
此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.
【详解】
连接OA,
由题意可知∠OAC=90°,
∵AB=AC,
∴∠B=∠C,
根据圆周角定理可知∠AOD=2∠B=2∠C,
∵∠OAC=90°
∴∠C+∠AOD=90°,
∴∠C+2∠C=90°,
故∠C=30°=∠B,
∴在Rt△OAC中,sin∠C==,
∴OC=2OA,
∵OA=OD,
∴OD+CD=2OA,
∴CD=OA=2,
∵OB=OA,
∴∠OAE=∠B=30°,
∴在Rt△OAE中,sin∠OAE==,
∴OA=2OE,
∴OE=OA=,
故答案为.
【点睛】
本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.
12、1.
【解析】
∵AB=5,AD=12,
∴根据矩形的性质和勾股定理,得AC=13.
∵BO为Rt△ABC斜边上的中线
∴BO=6.5
∵O是AC的中点,M是AD的中点,
∴OM是△ACD的中位线
∴OM=2.5
∴四边形ABOM的周长为:6.5+2.5+6+5=1
故答案为1
13、100 mm1
【解析】
首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.
【详解】
根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,
下面的长方体长8mm,宽6mm,高1mm,
∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).
故答案为100 mm1.
【点睛】
此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.
14、5x﹣3y=8 3x+8y=9
【解析】
方程组的解一定是方程5x﹣3y=8与3x+8y=9的公共解.
故答案为5x﹣3y=8;3x+8y=9.
15、
【解析】
由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.
【详解】
∵2x-y=,
∴-6x+3y=-.
∴原式=--1=-.
故答案为-.
【点睛】
本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.
16、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
17、或
【解析】
分析:依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
详解:分两种情况:
①如图,当∠CDM=90°时,△CDM是直角三角形,
∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,
∴∠C=30°,AB=AC=+2,
由折叠可得,∠MDN=∠A=60°,
∴∠BDN=30°,
∴BN=DN=AN,
∴BN=AB=,
∴AN=2BN=,
∵∠DNB=60°,
∴∠ANM=∠DNM=60°,
∴∠AMN=60°,
∴AN=MN=;
②如图,当∠CMD=90°时,△CDM是直角三角形,
由题可得,∠CDM=60°,∠A=∠MDN=60°,
∴∠BDN=60°,∠BND=30°,
∴BD=DN=AN,BN=BD,
又∵AB=+2,
∴AN=2,BN=,
过N作NH⊥AM于H,则∠ANH=30°,
∴AH=AN=1,HN=,
由折叠可得,∠AMN=∠DMN=45°,
∴△MNH是等腰直角三角形,
∴HM=HN=,
∴MN=,
故答案为:或.
点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
三、解答题(共7小题,满分69分)
18、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.
19、
【解析】
原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;
【详解】
解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab
=a2+b2,
当a=1、b=﹣时,
原式=12+(﹣)2
=1+
=.
【点睛】
考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.
20、(1)(2).
【解析】
(1)根据总共三种,A只有一种可直接求概率;
(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
【详解】
解: (1)甲投放的垃圾恰好是A类的概率是.
(2)列出树状图如图所示:
由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
21、0
【解析】
本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式.
【点睛】
本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.
22、(1)见解析;(2)20°;
【解析】
(1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;
(2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.
【详解】
(1)如图,AD为所求;
(2)∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°﹣∠B=90°﹣70°=20°.
【点睛】
考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.
23、,4.
【解析】
先括号内通分,然后计算除法,最后代入化简即可.
【详解】
原式= .
当时,原式=4.
【点睛】
此题考查分式的化简求值,解题关键在于掌握运算法则.
24、(1)20%;(2)12.1.
【解析】
试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;
(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.
试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得
7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).
答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;
(2)10800(1+0.2)=12960(本)
10800÷1310=8(本)
12960÷1440=9(本)
(9﹣8)÷8×100%=12.1%.
故a的值至少是12.1.
考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.
贵州省毕节市七星关区七星关区金陵学校2023-2024学年七年级上学期期末数学试题: 这是一份贵州省毕节市七星关区七星关区金陵学校2023-2024学年七年级上学期期末数学试题,共9页。
2023-2024学年贵州省毕节市七星关区第三实验学校九上数学期末质量检测试题含答案: 这是一份2023-2024学年贵州省毕节市七星关区第三实验学校九上数学期末质量检测试题含答案,共8页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。
2023-2024学年贵州省毕节市七星关区第三实验学校九上数学期末检测试题含答案: 这是一份2023-2024学年贵州省毕节市七星关区第三实验学校九上数学期末检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,点E等内容,欢迎下载使用。