2022年广东省深圳外国语学校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列图形中,既是轴对称图形又是中心对称图形的是( )
A.等边三角形 B.菱形 C.平行四边形 D.正五边形
2.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是( )
A.①② B.①③ C.①④ D.①③④
3.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是( )
A. B. C. D.
4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是( )
A. B.
C. D.
5.如图,在中,分别在边边上,已知,则的值为( )
A. B. C. D.
6.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是( )cm.
A.7 B.11 C.13 D.16
7.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
8.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
A.31° B.28° C.62° D.56°
9.下列说法错误的是( )
A.必然事件的概率为1
B.数据1、2、2、3的平均数是2
C.数据5、2、﹣3、0的极差是8
D.如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖
10.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是
12.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.
13.对于实数,我们用符号表示两数中较小的数,如.因此, ________;若,则________.
14.64的立方根是_______.
15.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.
16.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).
三、解答题(共8题,共72分)
17.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
18.(8分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
19.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
20.(8分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.
(1)用列表法或树状图法写出所有可能出现的结果;
(2)求两次取出的小球上的数字之和为奇数的概率P.
21.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图
(2)求扇形统计图中m的值和E组对应的圆心角度数
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数
22.(10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
求反比例函数的解析式;观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
23.(12分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)
24.先化简,再求值:,其中满足.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
在平面内,如果一个图形沿一条直线对折,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内一个图形绕某个点旋转180°,如果旋转前后的图形能互相重合,那么这个图形叫做中心对称图形,分别判断各选项即可解答.
【详解】
解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;
B、菱形是轴对称图形,也是中心对称图形,故此选项正确;
C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
D、正五边形是轴对称图形,不是中心对称图形,故此选项错误.
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,熟练掌握是解题的关键.
2、C
【解析】
根据倒数的定义,分别进行判断即可得出答案.
【详解】
∵①1和1;1×1=1,故此选项正确;
②-1和1;-1×1=-1,故此选项错误;
③0和0;0×0=0,故此选项错误;
④−和−1,-×(-1)=1,故此选项正确;
∴互为倒数的是:①④,
故选C.
【点睛】
此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
3、A
【解析】
利用平行线的判定方法判断即可得到结果.
【详解】
∵∠1=∠2,
∴AB∥CD,选项A符合题意;
∵∠3=∠4,
∴AD∥BC,选项B不合题意;
∵∠D=∠5,
∴AD∥BC,选项C不合题意;
∵∠B+∠BAD=180°,
∴AD∥BC,选项D不合题意,
故选A.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
4、C
【解析】
根据定义运算“※” 为: a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.
【详解】
解:y=2※x=,
当x>0时,图象是y=对称轴右侧的部分;
当x<0时,图象是y=对称轴左侧的部分,
所以C选项是正确的.
【点睛】
本题考查了二次函数的图象,利用定义运算“※”为: a※b=
得出分段函数是解题关键.
5、B
【解析】
根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
【详解】
解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:B.
【点睛】
本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
6、C
【解析】
直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.
【详解】
∵将线段DC沿着CB的方向平移7cm得到线段EF,
∴EF=DC=4cm,FC=7cm,
∵AB=AC,BC=12cm,
∴∠B=∠C,BF=5cm,
∴∠B=∠BFE,
∴BE=EF=4cm,
∴△EBF的周长为:4+4+5=13(cm).
故选C.
【点睛】
此题主要考查了平移的性质,根据题意得出BE的长是解题关键.
7、D
【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
【详解】
解:∵∠ACB=90°,AB=5,AC=4,
∴BC=3,
在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
∴∠A=∠BCD.
∴tan∠BCD=tanA==,
故选D.
【点睛】
本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
8、D
【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.
【详解】
解:∵四边形ABCD为矩形,
∴AD∥BC,∠ADC=90°,
∵∠FDB=90°-∠BDC=90°-62°=28°,
∵AD∥BC,
∴∠CBD=∠FDB=28°,
∵矩形ABCD沿对角线BD折叠,
∴∠FBD=∠CBD=28°,
∴∠DFE=∠FBD+∠FDB=28°+28°=56°.
故选D.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
9、D
【解析】
试题分析:A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;
B.数据1、2、2、3的平均数是=2,本项正确;
C.这些数据的极差为5﹣(﹣3)=8,故本项正确;
D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,
故选D.
考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件
10、D
【解析】
试题解析:A、∵4+10+8+6+2=30(人),
∴参加本次植树活动共有30人,结论A正确;
B、∵10>8>6>4>2,
∴每人植树量的众数是4棵,结论B正确;
C、∵共有30个数,第15、16个数为5,
∴每人植树量的中位数是5棵,结论C正确;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植树量的平均数约是4.73棵,结论D不正确.
故选D.
考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.
【详解】
当CD∥AB时,PM长最大,连接OM,OC,
∵CD∥AB,CP⊥CD,
∴CP⊥AB,
∵M为CD中点,OM过O,
∴OM⊥CD,
∴∠OMC=∠PCD=∠CPO=90°,
∴四边形CPOM是矩形,
∴PM=OC,
∵⊙O直径AB=8,
∴半径OC=4,
即PM=4.
【点睛】
本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
12、1.
【解析】
根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.
【详解】
根据题意分析可得:第1个图案中棋子的个数5个.
第2个图案中棋子的个数5+6=11个.
….
每个图形都比前一个图形多用6个.
∴第30个图案中棋子的个数为5+29×6=1个.
故答案为1.
【点睛】
考核知识点:图形的规律.分析出一般数量关系是关键.
13、 2或-1.
【解析】
①∵--,
∴min{-,-}=-;
②∵min{(x−1)2,x2}=1,
∴当x>0.5时,(x−1)2=1,
∴x−1=±1,
∴x−1=1,x−1=−1,
解得:x1=2,x2=0(不合题意,舍去),
当x⩽0.5时,x2=1,
解得:x1=1(不合题意,舍去),x2=−1,
14、4.
【解析】
根据立方根的定义即可求解.
【详解】
∵43=64,
∴64的立方根是4
故答案为4
【点睛】
此题主要考查立方根的定义,解题的关键是熟知立方根的定义.
15、4
【解析】
∵四边形MNPQ是矩形,
∴NQ=MP,
∴当MP最大时,NQ就最大.
∵点M是抛物线在轴上方部分图象上的一点,且MP⊥轴于点P,
∴当点M是抛物线的顶点时,MP的值最大.
∵,
∴抛物线的顶点坐标为(2,4),
∴当点M的坐标为(2,4)时,MP最大=4,
∴对角线NQ的最大值为4.
16、<
【解析】
把点(-1,a)、(-2,b)分别代入抛物线,则有:
a=1-2-3=-4,b=4-4-3=-3,
-4<-3,
所以a 故答案为<.
三、解答题(共8题,共72分)
17、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
【解析】
(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
【详解】
(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
∴抛物线的解析式为y=﹣x2+2x+3;
把C(0,3)代入y=﹣x+n,解得n=3,
∴直线CD的解析式为y=﹣x+3,
解方程组,解得
或,
∴D点坐标为(,);
(2)存在.
设P(m,﹣m2+2m+3),则E(m,﹣m+3),
∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
当m=时,△CDP的面积存在最大值,最大值为;
(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
综上所述,m的值为或或.
【点睛】
本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
18、(1)证明见解析;(2);(3)证明见解析.
【解析】
分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;
(2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;
(3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.
详解:(1)∵AB=AC,
∴∠ABC=∠ACB,
∵M为BC的中点,
∴AM⊥BC,
在Rt△ABM中,∠MAB+∠ABC=90°,
在Rt△CBE中,∠EBC+∠ACB=90°,
∴∠MAB=∠EBC,
又∵MB=MN,
∴△MBN为等腰直角三角形,
∴∠MNB=∠MBN=45°,
∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
∴∠NBE=∠ABN,即BN平分∠ABE;
(2)设BM=CM=MN=a,
∵四边形DNBC是平行四边形,
∴DN=BC=2a,
在△ABN和△DBN中,
∵,
∴△ABN≌△DBN(SAS),
∴AN=DN=2a,
在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,
解得:a=±(负值舍去),
∴BC=2a=;
(3)∵F是AB的中点,
∴在Rt△MAB中,MF=AF=BF,
∴∠MAB=∠FMN,
又∵∠MAB=∠CBD,
∴∠FMN=∠CBD,
∵,
∴,
∴△MFN∽△BDC.
点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.
19、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元
【解析】
(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
【详解】
解:(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.
答:购进A种树苗1棵,B种树苗2棵.
(2)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
12﹣x<x,解得:x>8.3.
∵购进A、B两种树苗所需费用为80x+60(12﹣x)=20x+120,是x的增函数,
∴费用最省需x取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.
20、 (1见解析;(2).
【解析】
(1)根据题意先画出树状图,得出所有可能出现的结果数;
(2)根据(1)可得共有9种情况,两次取出小球上的数字和为奇数的情况,再根据概率公式即可得出答案.
【详解】
(1)列表得,
(2)两次取出的小球上的数字之和为奇数的共有4种,
∴P两次取出的小球上数字之和为奇数的概率P=.
【点睛】
此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
21、略;m=40, 1.4°;870人.
【解析】
试题分析:根据A组的人数和比例得出总人数,然后得出D组的人数,补全条形统计图;根据C组的人数和总人数得出m的值,根据E组的人数求出E的百分比,然后计算圆心角的度数;根据D组合E组的百分数总和,估算出该校的每周的课外阅读时间不小于6小时的人数.
试题解析:(1)补全频数分布直方图,如图所示.
(2)∵10÷10%=100 ∴40÷100=40% ∴m=40
∵4÷100=4% ∴“E”组对应的圆心角度数=4%×360°=1.4°
(3)3000×(25%+4%)=870(人).
答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.
考点:统计图.
22、(1)
(2)﹣1<x<0或x>1.
(3)四边形OABC是平行四边形;理由见解析.
【解析】
(1)设反比例函数的解析式为(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式.
(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC
【详解】
解:(1)设反比例函数的解析式为(k>0)
∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).
又∵点A在上,∴,解得k=2.,
∴反比例函数的解析式为.
(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1.
(3)四边形OABC是菱形.证明如下:
∵A(﹣1,﹣2),∴.
由题意知:CB∥OA且CB=,∴CB=OA.
∴四边形OABC是平行四边形.
∵C(2,n)在上,∴.∴C(2,1).
∴.∴OC=OA.
∴平行四边形OABC是菱形.
23、缆车垂直上升了186 m.
【解析】
在Rt中,米,在Rt中,即可求出缆车从点A到点D垂直上升的距离.
【详解】
解:
在Rt中,斜边AB=200米,∠α=16°,
(m),
在Rt中,斜边BD=200米,∠β=42°,
因此缆车垂直上升的距离应该是BC+DF=186(米).
答:缆车垂直上升了186米.
【点睛】
本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.
24、,1.
【解析】
原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可.
【详解】
解:原式
∵,
∴,
∴原式
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
2023年广东省深圳外国语学校中考数学三模试卷(含解析): 这是一份2023年广东省深圳外国语学校中考数学三模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市福田外国语学校中考数学三模试卷(含解析): 这是一份2023年广东省深圳市福田外国语学校中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广东省深圳市宝安第一外国语学校中考数学三模试卷(含解析): 这是一份2023年广东省深圳市宝安第一外国语学校中考数学三模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。