2022年贵州省黔南州瓮安四中学中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
A.圆锥 B.圆柱 C.球 D.正方体
2.点P(4,﹣3)关于原点对称的点所在的象限是( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
3.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4
C. D.(a2b)3=a5b3
4.若=1,则符合条件的m有( )
A.1个 B.2个 C.3个 D.4个
5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
A. B.
C. D.
6.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是( )
A. B. C. D.2
7.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为( )
A. B. C. D.
8.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于( )
A. B. C. D.
9.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则的值为( )
A.3 B. C. D.
10.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
A.摸出的三个球中至少有一个球是黑球
B.摸出的三个球中至少有一个球是白球
C.摸出的三个球中至少有两个球是黑球
D.摸出的三个球中至少有两个球是白球
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若关于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:的值为_____.
12.观察下列等式:
第1个等式:a1=;
第2个等式:a2=;
第3个等式:a3=;
…
请按以上规律解答下列问题:
(1)列出第5个等式:a5=_____;
(2)求a1+a2+a3+…+an=,那么n的值为_____.
13.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.
14.如图,BD是矩形ABCD的一条对角线,点E,F分别是BD,DC的中点.若AB=4,BC=3,则AE+EF的长为_____.
15.从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .
16.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.
三、解答题(共8题,共72分)
17.(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
18.(8分)如图,已知在中,,是的平分线.
(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)
(2)判断直线与的位置关系,并说明理由.
19.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.
20.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).
21.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
22.(10分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.
23.(12分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
(1)求此抛物线的解析式;
(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
24.解不等式组:并求它的整数解的和.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.
【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;
B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;
C. 球的主视图只能是圆,故符合题意;
D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,
故选C.
【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.
2、C
【解析】
由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.
【详解】
∵设P(4,﹣3)关于原点的对称点是点P1,
∴点P1的坐标为(﹣4,3),
∴点P1在第二象限.
故选 C
【点睛】
本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.
3、B
【解析】
由整数指数幂和分式的运算的法则计算可得答案.
【详解】
A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;
B项, 根据“同底数幂相除,底数不变,指数相减”可得: a6÷a2=a4,故B项正确;
C项,根据分式的加法法则可得:,故C项错误;
D项, 根据 “积的乘方等于乘方的积” 可得:,故D项错误;
故本题正确答案为B.
【点睛】
幂的运算法则:
(1) 同底数幂的乘法: (m、n都是正整数)
(2)幂的乘方:(m、n都是正整数)
(3)积的乘方: (n是正整数)
(4)同底数幂的除法:(a≠0,m、n都是正整数,且m>n)
(5)零次幂:(a≠0)
(6) 负整数次幂: (a≠0, p是正整数).
4、C
【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
【详解】
=1
m2-9=0或m-2= 1
即m= 3或m=3,m=1
m有3个值
故答案选C.
【点睛】
本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
5、A
【解析】
若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
解:设走路线一时的平均速度为x千米/小时,
故选A.
6、C
【解析】
连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.
【详解】
解:如图,连接OB,
∵PB切⊙O于点B,
∴∠OBP=90°,
∵BP=6,∠P=30°,
∴∠POB=60°,OD=OB=BPtan30°=6×=2,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵OD⊥AB,
∴∠OCB=90°,
∴∠OBC=30°,
则OC=OB=,
∴CD=.
故选:C.
【点睛】
本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.
7、A
【解析】
过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.
【详解】
过O作OC⊥AB于C,过N作ND⊥OA于D,
∵N在直线y=x+3上,
∴设N的坐标是(x,x+3),
则DN=x+3,OD=-x,
y=x+3,
当x=0时,y=3,
当y=0时,x=-4,
∴A(-4,0),B(0,3),
即OA=4,OB=3,
在△AOB中,由勾股定理得:AB=5,
∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,
∴3×4=5OC,
OC=,
∵在Rt△NOM中,OM=ON,∠MON=90°,
∴∠MNO=45°,
∴sin45°=,
∴ON=,
在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,
即(x+3)2+(-x)2=()2,
解得:x1=-,x2=,
∵N在第二象限,
∴x只能是-,
x+3=,
即ND=,OD=,
tan∠AON=.
故选A.
【点睛】
本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强.
8、A
【解析】
首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
【详解】
设此多边形为n边形,
根据题意得:180(n-2)=1080,
解得:n=8,
∴这个正多边形的每一个外角等于:360°÷8=45°.
故选A.
【点睛】
此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
9、C
【解析】
连接 D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则≌,根据全等三角形的性质可得: 即 根据等腰三角形的性质可得: 设 则
即可求出的值.
【详解】
如图:
连接
D为弧AB的中点,根据弧,弦的关系可知,AD=BD,
根据圆周角定理可得:
在BC上截取,连接DF,
则≌,
即
根据等腰三角形的性质可得:
设 则
故选C.
【点睛】
考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.
10、A
【解析】
根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
【详解】
A、是必然事件;
B、是随机事件,选项错误;
C、是随机事件,选项错误;
D、是随机事件,选项错误.
故选A.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
利用根与系数的关系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式变形,再代入,即可求出答案.
【详解】
∵x2+2x-m2-m=0,m=1,2,3,…,2018,
∴由根与系数的关系得:α1+β1=-2,α1β1=-1×2;
α2+β2=-2,α2β2=-2×3;
…
α2018+β2018=-2,α2018β2018=-2018×1.
∴原式=
=
=2×()
=2×(1-)
=,
故答案为.
【点睛】
本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.
12、 49
【解析】
(1)观察等式可得 然后根据此规律就可解决问题;
(2)只需运用以上规律,采用拆项相消法即可解决问题.
【详解】
(1)观察等式,可得以下规律:,
∴
(2)
解得:n=49.
故答案为:49.
【点睛】
属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
13、﹣1
【解析】
根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.
【详解】
解:∵关于x的方程x2−2x+n=1没有实数根,
∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,
∴n>2,
∴|2−n |-│1-n│=n-2-n+1=-1.
故答案为-1.
【点睛】
本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.
14、1
【解析】
先根据三角形中位线定理得到的长,再根据直角三角形斜边上中线的性质,即可得到的长,进而得出计算结果.
【详解】
解:∵点E,F分别是的中点,
∴FE是△BCD的中位线,
.
又∵E是BD的中点,
∴Rt△ABD中,,
故答案为1.
【点睛】
本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
15、144°
【解析】
根据多边形内角和公式计算即可.
【详解】
解:由题知,这是一个10边形,根据多边形内角和公式:
每个内角等于.
故答案为:144°.
【点睛】
此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.
16、(-)cm2
【解析】
S阴影=S扇形-S△OBD= 52-×5×5=.
故答案是: .
三、解答题(共8题,共72分)
17、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
18、(1)见解析;(2)与相切,理由见解析.
【解析】
(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
(2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.
【详解】
(1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,
②作直线,与相交于点,
③以为圆心,为半径作圆,如图即为所作;
(2)与相切,理由如下:
连接OD,
为半径,
,
是等腰三角形,
,
平分,
,
,
,
,
,
,
为半径,
与相切.
【点睛】
本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.
19、(1) (2)证明见解析
【解析】
(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
【详解】
解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
在 Rt△ABE 中,∵OB=OE,
∴BE=2OA=2,
∵MB=ME,
∴∠MBE=∠MEB=15°,
∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
∵AB2+AE2=BE2,
∴,
∴x= (负根已经舍弃),
∴AB=AC=(2+ )• ,
∴BC= AB= +1.
作 CQ⊥AC,交 AF 的延长线于 Q,
∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,
∵∠BAC=90°,FG⊥CD,
∴∠AEB=∠CMF,
∴∠GEM=∠GME,
∴EG=MG,
∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
∴△ABE≌△CAQ(ASA),
∴BE=AQ,∠AEB=∠Q,
∴∠CMF=∠Q,
∵∠MCF=∠QCF=45°,CF=CF,
∴△CMF≌△CQF(AAS),
∴FM=FQ,
∴BE=AQ=AF+FQ=AF=FM,
∵EG=MG,
∴BG=BE+EG=AF+FM+MG=AF+FG.
【点睛】
本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
20、5.6千米
【解析】
设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.
【详解】
设PD的长为x千米,DA的长为y千米,
在Rt△PAD中,tan∠DPA=,
即tan18°=,
∴y=0.33x,
在Rt△PDB中,tan∠DPB=,
即tan53°=,
∴y+5.6=1.33x,
∴0.33x+5.6=1.33x,解得x=5.6,
答:此时观光船到大桥AC段的距离PD的长为5.6千米.
【点睛】
本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.
21、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.
22、解:(1)证明见解析;
(2)⊙O的半径是7.5cm.
【解析】
(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.
(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.
【详解】
(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD为⊙O的半径,
∴DE是⊙O的切线.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
则AC=15(cm).
∴⊙O的半径是7.5cm.
考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.
23、(1);(2)-2或-1;(3)-1≤n<1或1
(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
(2)根据题意画出图形,分三种情况进行讨论;
(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
【详解】
解:(1)依题意,得:
解得:
∴此抛物线的解析式 ;
(2)设直线AB的解析式为y=kx+b,依题意得:
解得:
∴直线AB的解析式为y=-x.
∵点P的横坐标为m,且在抛物线上,
∴点P的坐标为(m, )
∵轴,且点Q有线段AB上,
∴点Q的坐标为(m,-m)
① 当PQ=AP时,如图,∵∠APQ=90°,轴,
∴
解得,m=-2或m=1(舍去)
② 当AQ=AP时,如图,过点A作AC⊥PQ于C,
∵为等腰直角三角形,
∴2AC=PQ
即m=1(舍去)或m=-1.
综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
(3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
∴点E的坐标为(n,n-2)
当点E恰好在抛物线上时,解得,n=-1.
∴此时n的取值范围-1≤n<1.
②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
当点E在抛物线上时,
解得,n=3或n=1.
∵n>1.
∴n=3.
∴此时n的取值范围1
【点睛】
本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
24、0
【解析】
分析:先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可求出不等式组的解集.
详解: ,
由①去括号得:﹣3x﹣3﹣x+3<8,
解得:x>﹣2,
由②去分母得:4x+2﹣3+3x≤6,
解得:x≤1,
则不等式组的解集为﹣2<x≤1.
点睛:本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.
贵州省黔南州瓮安县达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份贵州省黔南州瓮安县达标名校2021-2022学年十校联考最后数学试题含解析,共20页。
贵州省黔南州瓮安四中学2022年中考三模数学试题含解析: 这是一份贵州省黔南州瓮安四中学2022年中考三模数学试题含解析,共19页。试卷主要包含了我们知道,方程x等内容,欢迎下载使用。
2022年贵州省黔南州瓮安县达标名校中考数学四模试卷含解析: 这是一份2022年贵州省黔南州瓮安县达标名校中考数学四模试卷含解析,共24页。试卷主要包含了的相反数是等内容,欢迎下载使用。