终身会员
搜索
    上传资料 赚现金
    2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析01
    2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析02
    2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022年河北省保定市冀英校初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算错误的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是(  )
    A.2k-2 B.k-1 C.k D.k+1
    2.一次函数与反比例函数在同一个坐标系中的图象可能是(  )
    A. B. C. D.
    3.计算的正确结果是(  )
    A. B.- C.1 D.﹣1
    4.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是(  )

    A.0.5 B.1 C.3 D.π
    5.如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②=PB•EF;③PF•EF=2;④EF•EP=4AO•PO.其中正确的是(  )

    A.①②③ B.①②④ C.①③④ D.③④
    6.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为(  )
    A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
    7.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
    A. B.
    C. D.
    8.下列计算错误的是(  )
    A.a•a=a2 B.2a+a=3a C.(a3)2=a5 D.a3÷a﹣1=a4
    9.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为(  )
    A. B.
    C. D.
    10.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
    A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
    二、填空题(共7小题,每小题3分,满分21分)
    11.在中,,,点分别是边的中点,则的周长是__________.
    12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________

    13.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
    14.化简:_____________.
    15.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.

    16.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为______.

    17.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
    (1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为   m.
    (2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)

    19.(5分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)

    20.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
    (1)求每部型手机和型手机的销售利润;
    (2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
    ①求关于的函数关系式;
    ②该手机店购进型、型手机各多少部,才能使销售总利润最大?
    (3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
    21.(10分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
    (2)如图,在中,,,为边的中点,于点,交于,求的值
    (3)如图,中,,为边的中点,于点,交于,若,,求.

    22.(10分)先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.
    23.(12分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)

    24.(14分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
    【详解】
    ∵0<k<1,
    ∴k-1<0,
    ∴此函数是减函数,
    ∵1≤x≤1,
    ∴当x=1时,y最小=1(k-1)+1=1k-1.
    故选A.
    【点睛】
    本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
    2、B
    【解析】
    当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴D不符合题意.
    故选B.
    3、D
    【解析】
    根据有理数加法的运算方法,求出算式的正确结果是多少即可.
    【详解】
    原式
    故选:D.
    【点睛】
    此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
    ①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
    数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
    1相加,仍得这个数.
    4、C
    【解析】
    连接OC、OD,根据正六边形的性质得到∠COD=60°,得到△COD是等边三角形,得到OC=CD,根据题意计算即可.
    【详解】
    连接OC、OD,

    ∵六边形ABCDEF是正六边形,
    ∴∠COD=60°,又OC=OD,
    ∴△COD是等边三角形,
    ∴OC=CD,
    正六边形的周长:圆的直径=6CD:2CD=3,
    故选:C.
    【点睛】
    本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键.
    5、B
    【解析】
    由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.
    【详解】
    解:设AD=x,AB=2x
    ∵四边形ABCD是矩形
    ∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB
    ∴BC=x,CD=2x
    ∵CP:BP=1:2
    ∴CP=x,BP=x
    ∵E为DC的中点,
    ∴CE=CD=x,
    ∴tan∠CEP==,tan∠EBC==
    ∴∠CEP=30°,∠EBC=30°
    ∴∠CEB=60°
    ∴∠PEB=30°
    ∴∠CEP=∠PEB
    ∴EP平分∠CEB,故①正确;
    ∵DC∥AB,
    ∴∠CEP=∠F=30°,
    ∴∠F=∠EBP=30°,∠F=∠BEF=30°,
    ∴△EBP∽△EFB,

    ∴BE·BF=EF·BP
    ∵∠F=∠BEF,
    ∴BE=BF
    ∴=PB·EF,故②正确
    ∵∠F=30°,
    ∴PF=2PB=x,
    过点E作EG⊥AF于G,

    ∴∠EGF=90°,
    ∴EF=2EG=2x
    ∴PF·EF=x·2x=8x2
    2AD2=2×(x)2=6x2,
    ∴PF·EF≠2AD2,故③错误.
    在Rt△ECP中,
    ∵∠CEP=30°,
    ∴EP=2PC=x
    ∵tan∠PAB==
    ∴∠PAB=30°
    ∴∠APB=60°
    ∴∠AOB=90°
    在Rt△AOB和Rt△POB中,由勾股定理得,
    AO=x,PO=x
    ∴4AO·PO=4×x·x=4x2
    又EF·EP=2x·x=4x2
    ∴EF·EP=4AO·PO.故④正确.
    故选,B
    【点睛】
    本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.
    6、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    180000=1.8×105,
    故选A.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、B
    【解析】
    抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
    【详解】
    解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
    可设新抛物线的解析式为:y=(x-h)1+k,
    代入得:y=(x+1)1-1.
    ∴所得图象的解析式为:y=(x+1)1-1;
    故选:B.
    【点睛】
    本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
    8、C
    【解析】
    解:A、a•a=a2,正确,不合题意;
    B、2a+a=3a,正确,不合题意;
    C、(a3)2=a6,故此选项错误,符合题意;
    D、a3÷a﹣1=a4,正确,不合题意;
    故选C.
    【点睛】
    本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂.
    9、D
    【解析】
    解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.
    10、C
    【解析】
    绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
    【详解】
    n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
    【点睛】
    本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
    【详解】
    解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
    ∴AB===5,
    ∵点D、E、F分别是边AB、AC、BC的中点,
    ∴DE=BC,DF=AC,EF=AB,
    ∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
    故答案为:6.

    【点睛】
    本题考查了勾股定理和三角形中位线定理.
    12、
    【解析】
    由图形可得:
    13、.
    【解析】
    试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
    试题解析:∵在△ABC中,∠C=90°,
    ∴∠A+∠B=90°,
    ∴cosB=sinA=.
    考点:互余两角三角函数的关系.
    14、
    【解析】
    根据分式的运算法则即可求解.
    【详解】
    原式=.
    故答案为:.
    【点睛】
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
    15、1
    【解析】
    设点P(m,m+2),
    ∵OP=,
    ∴ =,
    解得m1=1,m2=﹣1(不合题意舍去),
    ∴点P(1,1),
    ∴1=,
    解得k=1.
    点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键.
    16、1
    【解析】
    首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.
    【详解】
    如图:

    连接BE,
    ∵四边形BCED是正方形,
    ∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,
    ∴BF=CF,
    根据题意得:AC∥BD,
    ∴△ACP∽△BDP,
    ∴DP:CP=BD:AC=1:3,
    ∴DP:DF=1:1,
    ∴DP=PF=CF=BF,
    在Rt△PBF中,tan∠BPF==1,
    ∵∠APD=∠BPF,
    ∴tan∠APD=1.
    故答案为:1
    【点睛】
    此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
    17、10°
    【解析】
    根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.
    【详解】
    ∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
    ∴AD=BD,AE=CE,
    ∴∠B=∠BAD,∠C=∠CAE,
    ∵∠B=40°,∠C=45°,
    ∴∠B+∠C=85°,
    ∴∠BAD+∠CAE=85°,
    ∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,
    故答案为10°
    【点睛】
    本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)11.4;(2)19.5m.
    【解析】
    (1)根据直角三角形的性质和三角函数解答即可;
    (2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.
    【详解】
    解:(1)在Rt△ABC中,
    ∵∠BAC=64°,AC=5m,
    ∴AB=5÷0.44 11.4 (m);
    故答案为:11.4;
    (2)过点D作DH⊥地面于H,交水平线于点E,

    在Rt△ADE中,
    ∵AD=20m,∠DAE=64°,EH=1.5m,
    ∴DE=sin64°×AD≈20×0.9≈18(m),
    即DH=DE+EH=18+1.5=19.5(m),
    答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.
    【点睛】
    本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.
    19、 (1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.
    【解析】
    试题分析:(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.
    (2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG的两邻边相等,从而得到平行四边形AHBG是菱形.
    试题解析:
    (1)解:△ABC≌△BAD.
    证明:∵AD=BC,
    ∠ABC=∠BAD=90°,
    AB=BA,
    ∴△ABC≌△BAD(SAS).
    (2)证明:∵AH∥GB,BH∥GA,
    ∴四边形AHBG是平行四边形.
    ∵△ABC≌△BAD,
    ∴∠ABD=∠BAC.
    ∴GA=GB.
    ∴平行四边形AHBG是菱形.
    (3)需要添加的条件是AB=BC.
    点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.
    20、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
    【解析】
    (1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
    (2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
    ②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
    (3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
    【详解】
    解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
    根据题意,得,
    解得
    答:每部型手机的销售利润为元,每部型手机的销售利润为元.
    (2)①根据题意,得,即.
    ②根据题意,得,解得.
    ,,
    随的增大而减小.
    为正整数,
    当时,取最大值,.
    即手机店购进部型手机和部型手机的销售利润最大.
    (3)根据题意,得.
    即,.
    ①当时,随的增大而减小,
    当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
    ②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
    ③当时,,随的增大而增大,
    当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
    【点睛】
    本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
    21、 (1)相等,理由见解析;(2)2;(3).
    【解析】
    (1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
    (2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
    (3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
    【详解】
    解:(1)BF=AE,理由:
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=∠D=90°,
    ∴∠BAE+∠DAE=90°,
    ∵AE⊥BF,
    ∴∠BAE+∠ABF=90°,
    ∴∠ABF=∠DAE,
    在△ABF和△DAE中,
    ∴△ABF≌△DAE,
    ∴BF=AE,
    (2) 如图2,
    过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,

    ∴四边形ABCM是平行四边形,
    ∵∠ABC=90°,
    ∴▱ABCM是矩形,
    ∵AB=BC,
    ∴矩形ABCM是正方形,
    ∴AB=BC=CM,
    同(1)的方法得,△ABD≌△BCG,
    ∴CG=BD,
    ∵点D是BC中点,
    ∴BD=BC=CM,
    ∴CG=CM=AB,
    ∵AB∥CM,
    ∴△AFB∽△CFG,

    (3) 如图3,

    在Rt△ABC中,AB=3,BC=4,
    ∴AC=5,
    ∵点D是BC中点,
    ∴BD=BC=2,
    过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
    ∴四边形ABCN是平行四边形,
    ∵∠ABC=90°,∴▱ABCN是矩形,
    同(1)的方法得,∠BAD=∠CBP,
    ∵∠ABD=∠BCP=90°,
    ∴△ABD∽△BCP,


    ∴CP=
    同(2)的方法,△CFP∽△AFB,


    ∴CF=.
    【点睛】
    本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
    22、-.
    【解析】
    先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1
    【详解】
    解:原式= -
    = -
    =
    =
    =- .
    当x=-1或者x=1时分式没有意义
    所以选择当x=2时,原式=.
    【点睛】
    分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.
    23、DE的长度为6+1.
    【解析】
    根据相似三角形的判定与性质解答即可.
    【详解】
    解:过E作EF⊥BC,

    ∵∠CDE=120°,
    ∴∠EDF=60°,
    设EF为x,DF=x,
    ∵∠B=∠EFC=90°,
    ∵∠ACB=∠ECD,
    ∴△ABC∽△EFC,
    ∴,
    即,
    解得:x=9+2,
    ∴DE==6+1,
    答:DE的长度为6+1.
    【点睛】
    本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
    24、(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球2个,排球2个;方案①最省钱
    【解析】
    试题分析:(1)设篮球每个x元,排球每个y元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;
    (2)不等关系为:购买足球和篮球的总费用不超过1元,列式求得解集后得到相应整数解,从而求解.
    试题解析:解:(1)设篮球每个x元,排球每个y元,依题意,得:

    解得.
    答:篮球每个50元,排球每个30元.
    (2)设购买篮球m个,则购买排球(20-m)个,依题意,得:
    50m+30(20-m)≤1.
    解得:m≤2.
    又∵m≥8,∴8≤m≤2.
    ∵篮球的个数必须为整数,∴只能取8、9、2.
    ∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球2个,排球2个,费用为1元.
    以上三个方案中,方案①最省钱.
    点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.

    相关试卷

    北京师范大亚太实验校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份北京师范大亚太实验校2022年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列图形是中心对称图形的是,定义,如图所示的几何体的俯视图是等内容,欢迎下载使用。

    2022年河北省保定市莲池区冀英学校中考数学押题卷含解析: 这是一份2022年河北省保定市莲池区冀英学校中考数学押题卷含解析,共18页。试卷主要包含了一、单选题,cs30°的值为等内容,欢迎下载使用。

    2022届河北省保定市冀英校中考数学考前最后一卷含解析: 这是一份2022届河北省保定市冀英校中考数学考前最后一卷含解析,共19页。试卷主要包含了估算的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map