|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年河南省南阳市新野县重点中学中考数学模试卷含解析
    立即下载
    加入资料篮
    2022年河南省南阳市新野县重点中学中考数学模试卷含解析01
    2022年河南省南阳市新野县重点中学中考数学模试卷含解析02
    2022年河南省南阳市新野县重点中学中考数学模试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河南省南阳市新野县重点中学中考数学模试卷含解析

    展开
    这是一份2022年河南省南阳市新野县重点中学中考数学模试卷含解析,共24页。试卷主要包含了下列因式分解正确的是,如图的立体图形,从左面看可能是,下列方程中,两根之和为2的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=(  )

    A.50° B.40° C.30° D.20°
    2.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为(  )

    A. B. C. D.
    3.如图是二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②1a﹣b=0;③4a+1b+c<0;④若(﹣5,y1),(,y1)是抛物线上两点,则
    y1>y1.其中说法正确的是( )

    A.①② B.②③ C.①②④ D.②③④
    4.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8,BC=6,则∠ACD的正切值是(  )

    A. B. C. D.
    5.下列运算结果为正数的是( )
    A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)
    6.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为(  )
    A.﹣1 B.0 C.1或﹣1 D.2或0
    7.下列因式分解正确的是( )
    A. B.
    C. D.
    8.如图的立体图形,从左面看可能是(  )

    A. B.
    C. D.
    9.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )
    A.+=18 B.=18
    C.+=18 D.=18
    10.下列方程中,两根之和为2的是(  )
    A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0
    11.某车间20名工人日加工零件数如表所示:
    日加工零件数
    4
    5
    6
    7
    8
    人数
    2
    6
    5
    4
    3
    这些工人日加工零件数的众数、中位数、平均数分别是(  )
    A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6
    12.如图,若a∥b,∠1=60°,则∠2的度数为(  )

    A.40° B.60° C.120° D.150°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.
    14.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是_________.

    15.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.

    16.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.
    17.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1=  ▲  .
    18.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
    (1)求抛物线的表达式;
    (2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.

    20.(6分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

    21.(6分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.
    如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=   (用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.
    ①求a与b的值;
    ②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
    22.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:
    求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
    23.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.
    根据图中信息求出  ,  ;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?
    24.(10分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
    25.(10分)如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为45°,从楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角β为30°.已知树高EF=6米,求塔CD的高度(结果保留根号).

    26.(12分)某水果批发市场香蕉的价格如下表
    购买香蕉数(千克)
    不超过20千克
    20千克以上但不超过40千克
    40千克以上
    每千克的价格
    6元
    5元
    4元
    张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?
    27.(12分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
    超市:购物金额打9折后,若超过2000元再优惠300元;
    超市:购物金额打8折.
    某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:
    (1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;
    (2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    试题解析:延长ED交BC于F,

    ∵AB∥DE,


    在△CDF中,

    故选B.
    2、D
    【解析】
    连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×=,因此可求得S阴影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.
    故选D.

    点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.
    3、C
    【解析】
    ∵二次函数的图象的开口向上,∴a>0。
    ∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0。
    ∵二次函数图象的对称轴是直线x=﹣1,∴。∴b=1a>0。
    ∴abc<0,因此说法①正确。
    ∵1a﹣b=1a﹣1a=0,因此说法②正确。
    ∵二次函数图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0),
    ∴图象与x轴的另一个交点的坐标是(1,0)。
    ∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此说法③错误。
    ∵二次函数图象的对称轴为x=﹣1,
    ∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),
    ∵当x>﹣1时,y随x的增大而增大,而<3
    ∴y1<y1,因此说法④正确。
    综上所述,说法正确的是①②④。故选C。
    4、D
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.
    【详解】
    ∵CD是AB边上的中线,
    ∴CD=AD,
    ∴∠A=∠ACD,
    ∵∠ACB=90°,BC=6,AC=8,
    ∴tan∠A=,
    ∴tan∠ACD的值.
    故选D.
    【点睛】
    本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.
    5、B
    【解析】
    分别根据有理数的加、减、乘、除运算法则计算可得.
    【详解】
    解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
    B、1﹣(﹣2)=1+2=3,结果为正数;
    C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
    D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
    故选B.
    【点睛】
    本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
    6、A
    【解析】
    把x=﹣1代入方程计算即可求出k的值.
    【详解】
    解:把x=﹣1代入方程得:1+2k+k2=0,
    解得:k=﹣1,
    故选:A.
    【点睛】
    此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    7、C
    【解析】
    依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
    【详解】
    解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
    选项B,A中的等式不成立;
    选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
    故选C.
    【点睛】
    本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
    8、A
    【解析】
    根据三视图的性质即可解题.
    【详解】
    解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
    故选A.
    【点睛】
    本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
    9、B
    【解析】
    根据前后的时间和是18天,可以列出方程.
    【详解】
    若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.
    故选B
    【点睛】
    本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.
    10、B
    【解析】
    由根与系数的关系逐项判断各项方程的两根之和即可.
    【详解】
    在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;
    在方程x2-2x-3=0中,两根之和等于2,故B符合题意;
    在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;
    在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,
    故选B.
    【点睛】
    本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.
    11、D
    【解析】
    5出现了6次,出现的次数最多,则众数是5;
    把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;
    平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;
    故答案选D.
    12、C
    【解析】
    如图:

    ∵∠1=60°,
    ∴∠3=∠1=60°,
    又∵a∥b,
    ∴∠2+∠3=180°,
    ∴∠2=120°,
    故选C.
    点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数
    【详解】
    ∵PA,PB是⊙O是切线,
    ∴PA=PB.
    又∵∠P=46°,
    ∴∠PAB=∠PBA=.
    又∵PA是⊙O是切线,AO为半径,
    ∴OA⊥AP.
    ∴∠OAP=90°.
    ∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.
    故答案为:1
    【点睛】
    此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.
    14、
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∵AE⊥BD,

    ∴△ABE∽△ADB,
    ∵E是BC的中点,



    过F作FG⊥BC于G,




    故答案为
    15、
    【解析】
    过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.
    【详解】
    解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.
    在Rt△BDF中,BF=n,∠DBF=30°,
    ∴.
    在Rt△ACE中,∠AEC=90°,∠ACE=45°,
    ∴AE=CE=BF=n,
    ∴.
    故答案为:.

    【点睛】
    此题考查解直角三角形的应用,解题的关键在于做辅助线.
    16、
    【解析】
    画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.
    【详解】
    解:画树状图如下:

    由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,
    所以两次摸到的球上数之和是负数的概率为,
    故答案为:.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    17、
    【解析】
    连接BE,

    ∵在线段AC同侧作正方形ABMN及正方形BCEF,
    ∴BE∥AM.∴△AME与△AMB同底等高.
    ∴△AME的面积=△AMB的面积.
    ∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
    ∴当n≥2时,
    18、0.5<m<3
    【解析】
    根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.
    【详解】
    ∵点P(m−3,1−2m)在第三象限,
    ∴,
    解得:0.5 故答案为:0.5 【点睛】
    本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
    【解析】
    (1)利用待定系数法求抛物线的表达式;
    (2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.
    【详解】
    (1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),
    ∴设抛物线的解析式为y=a(x+1)(x﹣4),
    ∵抛物线与y轴交于点C(0,2),
    ∴a×1×(﹣4)=2,
    ∴a=﹣,
    ∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;
    (2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,
    ∴抛物线的对称轴为直线x=,
    ∴M(,0),∵点D与点C关于点M对称,且C(0,2),
    ∴D(3,﹣2),
    ∵MA=MB,MC=MD,
    ∴四边形ACBD是平行四边形,
    ∵A(﹣1,0),B(4,0),C(3,﹣22),
    ∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,
    ∴AD2+BD2=AB2,
    ∴△ABD是直角三角形,
    ∴∠ADB=90°,
    设点P(,m),
    ∴MP=|m|,
    ∵M(,0),B(4,0),
    ∴BM=,
    ∵△BMP与△ABD相似,
    ∴①当△BMP∽ADB时,
    ∴,
    ∴,
    ∴m=±,
    ∴P(,)或(,﹣),
    ②当△BMP∽△BDA时,

    ∴,
    ∴m=±5,
    ∴P(,5)或(,﹣5),
    即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).
    【点睛】
    本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
    20、(1)y=﹣x2+2x+1;(2)P ( ,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
    【解析】
    (1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.
    【详解】
    (1)把x=0代入y=﹣x+1,得:y=1,
    ∴C(0,1).
    把y=0代入y=﹣x+1得:x=1,
    ∴B(1,0),A(﹣1,0).
    将C(0,1)、B(1,0)代入y=﹣x2+bx+c得: ,解得b=2,c=1.
    ∴抛物线的解析式为y=﹣x2+2x+1.
    (2)如图所示:作点O关于BC的对称点O′,则O′(1,1).

    ∵O′与O关于BC对称,
    ∴PO=PO′.
    ∴OP+AP=O′P+AP≤AO′.
    ∴OP+AP的最小值=O′A==2.
    O′A的方程为y=
    P点满足解得:
    所以P ( ,)
    (1)y=﹣x2+2x+1=﹣(x﹣1)2+4,
    ∴D(1,4).
    又∵C(0,1,B(1,0),
    ∴CD=,BC=1,DB=2.
    ∴CD2+CB2=BD2,
    ∴∠DCB=90°.
    ∵A(﹣1,0),C(0,1),
    ∴OA=1,CO=1.
    ∴.
    又∵∠AOC=DCB=90°,
    ∴△AOC∽△DCB.
    ∴当Q的坐标为(0,0)时,△AQC∽△DCB.
    如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.

    ∵△ACQ为直角三角形,CO⊥AQ,
    ∴△ACQ∽△AOC.
    又∵△AOC∽△DCB,
    ∴△ACQ∽△DCB.
    ∴,即,解得:AQ=3.
    ∴Q(9,0).
    综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.
    【点睛】
    本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.
    21、(1) ;(2)①a=1,b=-1,②m=2.
    【解析】
    (1)根据题目中的新运算法则计算即可;
    (2)①根据题意列出方程组即可求出a,b的值;
    ②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.
    【详解】
    解:(1)T(4,﹣1)=
    =;
    故答案为;
    (2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,

    解得
    ②解法一:
    ∵a=1,b=﹣1,且x+y≠0,
    ∴T(x,y)===x﹣y.
    ∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,
    T(m,3m﹣3)=m﹣3m+3=﹣2m+3.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴2m﹣3=﹣2m+3,
    解得,m=2.
    解法二:由解法①可得T(x,y)=x﹣y,
    当T(x,y)=T(y,x)时,
    x﹣y=y﹣x,
    ∴x=y.
    ∵T(3m﹣3,m)=T(m,3m﹣3),
    ∴3m﹣3=m,
    ∴m=2.
    【点睛】
    本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..
    22、(1)3,补图详见解析;(2)
    【解析】
    (1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数
    (2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可
    【详解】
    由扇形图可以看到发箴言三条的有3名学生且占,
    故该班团员人数为:
    (人),
    则发4条箴言的人数为:(人),
    所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).

    (2)画树形图如下:

    由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.
    【点睛】
    此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键
    23、(1)100,35;(2)补全图形,如图;(3)800人
    【解析】
    (1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占的百分比可得答案.
    【详解】
    解:(1)∵被调查总人数为m=10÷10%=100人,
    ∴用支付宝人数所占百分比n%= ,
    ∴m=100,n=35.
    (2)网购人数为100×15%=15人,
    微信人数所占百分比为,
    补全图形如图:

    (3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.
    【点睛】
    本题考查条形统计图和扇形统计图的信息关联问题,样本估计总体问题,从不同的统计图得到必要的信息是解决问题的关键.
    24、1
    【解析】
    根据实数的混合计算,先把各数化简再进行合并.
    【详解】
    原式=1+3-2-3+2
    =1
    【点睛】
    此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
    25、(6+2)米
    【解析】
    根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.
    【详解】
    由题意可知∠BAD=∠ADB=45°,

    ∴FD=EF=6米,
    在Rt△PEH中,
    ∵tanβ==,
    ∴BF==5,
    ∴PG=BD=BF+FD=5+6,
    ∵tanβ= ,
    ∴CG=(5+6)·=5+2,
    ∴CD=(6+2)米.
    【点睛】
    本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
    26、第一次买14千克香蕉,第二次买36千克香蕉
    【解析】
    本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.
    【详解】
    设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.
    则①当0<x≤20,y≤40,则题意可得

    解得.
    ②当0<x≤20,y>40时,由题意可得

    解得.(不合题意,舍去)
    ③当20<x<3时,则3<y<2,此时张强用去的款项为
    5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);
    ④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,
    答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.
    【点睛】
    本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.
    27、(1)这种篮球的标价为每个50元;(2)见解析
    【解析】
    (1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
    (2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
    【详解】
    (1)设这种篮球的标价为每个x元,
    依题意,得,
    解得:x=50,
    经检验:x=50是原方程的解,且符合题意,
    答:这种篮球的标价为每个50元;
    (2)购买100个篮球,最少的费用为3850元,
    单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
    在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
    单独在B超市购买:100×50×0.8=4000元,
    在A、B两个超市共买100个,
    根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
    综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
    【点睛】
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.

    相关试卷

    2023年河南省南阳市新野县中考一模数学试题(含解析): 这是一份2023年河南省南阳市新野县中考一模数学试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省南阳市内乡县中考数学三模试卷(含解析): 这是一份2023年河南省南阳市内乡县中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省南阳市新野县中考数学一模试卷(含解析): 这是一份2023年河南省南阳市新野县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map