


2022年河南省安阳市林州市达标名校中考四模数学试题含解析
展开
这是一份2022年河南省安阳市林州市达标名校中考四模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,将点P,下列判断错误的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )
A.千里江山图
B.京津冀协同发展
C.内蒙古自治区成立七十周年
D.河北雄安新区建立纪念
2.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为( )
A.4 B. C.12 D.
3.已知一元二次方程有一个根为2,则另一根为
A.2 B.3 C.4 D.8
4.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
5.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是( )
A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)
6.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A. B. C. D.
7.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
节约用水量(单位:吨)
1
1.1
1.4
1
1.5
家庭数
4
6
5
3
1
这组数据的中位数和众数分别是( )
A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
8.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )
A. B.
C. D.
9.下列判断错误的是( )
A.对角线相等的四边形是矩形
B.对角线相互垂直平分的四边形是菱形
C.对角线相互垂直且相等的平行四边形是正方形
D.对角线相互平分的四边形是平行四边形
10.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )
A.1 B.2 C.3 D.4
11.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b1.其中正确的项有( )
A.2个 B.3个 C.4个 D.5个
12.下列计算正确的是( )
A.a2•a3=a5 B.2a+a2=3a3 C.(﹣a3)3=a6 D.a2÷a=2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:.
14.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .
15.如图,△ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G.若AD=DF=FB,则四边形DFGE的面积为_____.
16.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.
17.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.
18.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)解不等式组,并把解集在数轴上表示出来.
20.(6分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.
(1)当m为何值时,方程有两个不相等的实数根;
(2)当m为何整数时,此方程的两个根都为负整数.
21.(6分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
(1)求证:AO=EO;
(2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.
22.(8分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.
23.(8分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
24.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程的解集(请直接写出答案).
25.(10分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.
26.(12分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
27.(12分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据中心对称图形的概念求解.
【详解】
解:A选项是轴对称图形,不是中心对称图形,故本选项错误;
B选项不是中心对称图形,故本选项错误;
C选项为中心对称图形,故本选项正确;
D选项不是中心对称图形,故本选项错误.
故选C.
【点睛】
本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.
2、D
【解析】
分析:
由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.
详解:
由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,
∵△ABC是等边三角形,点D是BC边上的中点,
∴∠ABC=60°,AD⊥BC,
∵DP⊥AB于点P,此时DP=,
∴BD=,
∴BC=2BD=4,
∴AB=4,
∴AD=AB·sin∠B=4×sin60°=,
∴S△ABC=AD·BC=.
故选D.
点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.
3、C
【解析】
试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1.
考点:根与系数的关系.
4、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
5、B
【解析】
试题分析:由平移规律可得将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是(1,5),故选B.
考点:点的平移.
6、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故答案选:B.
【点睛】
本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.
7、D
【解析】
分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
详解:这组数据的中位数是;
这组数据的众数是1.1.
故选D.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
8、D
【解析】
此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
【详解】
解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
故选D.
点评:本题考核立意相对较新,考核了学生的空间想象能力.
9、A
【解析】
利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:、对角线相等的四边形是矩形,错误;
、对角线相互垂直平分的四边形是菱形,正确;
、对角线相互垂直且相等的平行四边形是正方形,正确;
、对角线相互平分的四边形是平行四边形,正确;
故选:.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
10、B
【解析】
此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.
【详解】
根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,
则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.
故选B.
【点睛】
本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.
11、B
【解析】
根据二次函数的图象与性质判断即可.
【详解】
①由抛物线开口向上知: a>1; 抛物线与y轴的负半轴相交知c<1; 对称轴在y轴的右侧知:b>1;所以:abc
相关试卷
这是一份2024年河南省安阳市林州市中考数学适应性试卷(含详细答案解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年河南省安阳市林州市中考数学适应性试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省安阳市重点达标名校2021-2022学年中考适应性考试数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图的立体图形,从左面看可能是等内容,欢迎下载使用。