2022年湖北省武汉洪山区五校联考中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是
A. B.
C. D.
2.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是
A. B. C. D.3
3.下列四个几何体,正视图与其它三个不同的几何体是( )
A. B.
C. D.
4.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
A. B.
C. D.
5.已知关于的方程,下列说法正确的是
A.当时,方程无解
B.当时,方程有一个实数解
C.当时,方程有两个相等的实数解
D.当时,方程总有两个不相等的实数解
6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
7.一元二次方程的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
8.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为( )
A.或2 B.或2 C.2或2 D.2或2
9.下列图形中,是中心对称图形,但不是轴对称图形的是( )
A. B.
C. D.
10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
A.1或−2 B.−或
C. D.1
二、填空题(共7小题,每小题3分,满分21分)
11.如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为______.
12.因式分解:=_______________.
13.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
14.对于任意不相等的两个实数,定义运算※如下:※=,如3※2==.那么8※4= .
15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.
16.如图,点、、在直线上,点,,在直线上,以它们为顶点依次构造第一个正方形,第二个正方形,若的横坐标是1,则的坐标是______,第n个正方形的面积是______.
17.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.
三、解答题(共7小题,满分69分)
18.(10分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
19.(5分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:
“读书节“活动计划书
书本类别
科普类
文学类
进价(单位:元)
18
12
备注
(1)用不超过16800元购进两类图书共1000本;
(2)科普类图书不少于600本;
…
(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;
(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0<a<5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?
20.(8分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.
21.(10分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.
(1)如图1,若△ABC为直角三角形,求的值;
(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;
(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1. 求的值.
22.(10分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
23.(12分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
24.(14分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.
(1)求点C与点A的距离(精确到1km);
(2)确定点C相对于点A的方向.
(参考数据:)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分三段讨论:
①两车从开始到相遇,这段时间两车距迅速减小;
②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;
③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;
结合图象可得C选项符合题意.故选C.
2、B
【解析】
如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
【详解】
解:如图,AB的中点即数轴的原点O.
根据数轴可以得到点A表示的数是.
故选:B.
【点睛】
此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.
3、C
【解析】
根据几何体的三视图画法先画出物体的正视图再解答.
【详解】
解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
故选:C.
【点睛】
此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
4、D
【解析】
试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
∴PA+PC=BC.故选D.
考点:作图—复杂作图.
5、C
【解析】
当时,方程为一元一次方程有唯一解.
当时,方程为一元二次方程,的情况由根的判别式确定:
∵,
∴当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解.综上所述,说法C正确.故选C.
6、C
【解析】
试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
考点:平行线的性质.
7、D
【解析】
试题分析:△=22-4×4=-12<0,故没有实数根;
故选D.
考点:根的判别式.
8、C
【解析】
过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.
【详解】
过B作直径,连接AC交AO于E,
∵点B为的中点,
∴BD⊥AC,
如图①,
∵点D恰在该圆直径上,D为OB的中点,
∴BD=×4=2,
∴OD=OB-BD=2,
∵四边形ABCD是菱形,
∴DE=BD=1,
∴OE=1+2=3,
连接OC,
∵CE=,
在Rt△DEC中,由勾股定理得:DC=;
如图②,
OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,
由勾股定理得:CE=,
DC=.
故选C.
【点睛】
本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.
9、A
【解析】
分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.
详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;
B、此图形不是中心对称图形,是轴对称图形,故此选项错误;
C、此图形是中心对称图形,也是轴对称图形,故此选项错误;
D、此图形不是中心对称图形,是轴对称图形,故此选项错误.
故选A.
点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.
10、D
【解析】
先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
【详解】
∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=-=-1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵-2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a-6=0,
∴a=1,或a=-2(不合题意舍去).
故选D.
【点睛】
本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
二、填空题(共7小题,每小题3分,满分21分)
11、1:1.
【解析】
试题分析:由DE∥BC,可得△ADE∽△ABC,根据相似三角形的面积之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.
考点:相似三角形的性质.
12、a(a+b)(a-b).
【解析】
分析:本题考查的是提公因式法和利用平方差公式分解因式.
解析:原式= a(a+b)(a-b).
故答案为a(a+b)(a-b).
13、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
【详解】
画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:=.
故答案为:.
【点睛】
本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
14、
【解析】
根据新定义的运算法则进行计算即可得.
【详解】
∵※=,
∴8※4=,
故答案为.
15、2
【解析】
分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.
详解:根据三角形的三边关系,得
第三边>4,而<1.
又第三条边长为整数,
则第三边是2.
点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.
16、 (4,2),
【解析】
由的横坐标是1,可得,利用两个函数解析式求出点、的坐标,得出的长度以及第1个正方形的面积,求出的坐标;然后再求出的坐标,得出第2个正方形的面积,求出的坐标;再求出、的坐标,得出第3个正方形的面积;从而得出规律即可得到第n个正方形的面积.
【详解】
解:点、、在直线上,的横坐标是1,
,
点,,在直线上,
,,
,,
第1个正方形的面积为:;
,
,,,
第2个正方形的面积为:;
,
,,
第3个正方形的面积为:;
,
第n个正方形的面积为:.
故答案为,.
【点睛】
本题考查了一次函数图象上点的坐标特征,正方形的性质以及规律型中图形的变化规律,解题的关键是找出规律本题难度适中,解决该题型题目时,根据给定的条件求出第1、2、3个正方形的边长,根据数据的变化找出变化规律是关键.
17、1.
【解析】
因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论.
【详解】
设这些书有x本,
由题意得,,
解得:x=1,
答:这些书有1本.
故答案为:1.
【点睛】
本题考查了比例的性质,正确的列出比例式是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
19、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.
【解析】
(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可.
(2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案.
【详解】
解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,
根据题意可得,
化简得:540-10x=360,
解得:x=18,
经检验:x=18是原分式方程的解,且符合题意,
则A类图书的标价为:1.5x=1.5×18=27(元),
答:A类图书的标价为27元,B类图书的标价为18元;
(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),
由题意得,,
解得:600≤t≤800,
则总利润w=(27-a-18)t+(18-12)(1000-t)
=(9-a)t+6(1000-t)
=6000+(3-a)t,
故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;
当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;
当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;
答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.
【点睛】
本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解.
20、(1)AC=;(2).
【解析】
【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;
(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.
【详解】(1)如图,过点A作AE⊥BC,
在Rt△ABE中,tan∠ABC=,AB=5,
∴AE=3,BE=4,
∴CE=BC﹣BE=5﹣4=1,
在Rt△AEC中,根据勾股定理得:AC==;
(2)∵DF垂直平分BC,
∴BD=CD,BF=CF=,
∵tan∠DBF=,
∴DF=,
在Rt△BFD中,根据勾股定理得:BD==,
∴AD=5﹣=,
则.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.
21、 (1) ;(2) 和;(3)
【解析】
(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、 ,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;
(3)过点作DH⊥轴于点,由::,可得::.设,可得 点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到 ①,将代入抛物线上,可得②,联立①②解方程组,即可解答.
【详解】
解:设,,则是方程的两根,
∴.
∵已知抛物线与轴交于点.
∴
在△中:,在△中:,
∵△为直角三角形,由题意可知∠°,
∴,
即,
∴,
∴,
解得:,
又,
∴.
由可知:,令则,
∴,
∴.
①以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为.
②当以为边,以点、、、Q为顶点的四边形是四边形时,
设抛物线的对称轴为 ,l与交于点,过点作⊥l,垂足为点,
即∠°∠.
∵四边形为平行四边形,
∴∥,又l∥轴,
∴∠∠=∠,
∴△≌△,
∴,
∴点的横坐标为,
∴
即点坐标为
∴符合条件的点坐标为和.
过点作DH⊥轴于点,
∵::,
∴::.
设,则点坐标为,
∴.
∵点在抛物线上,
∴点坐标为,
由(1)知,
∴,
∵∥,
∴△∽△,
∴,
∴,
即①,
又在抛物线上,
∴②,
将②代入①得:,
解得(舍去),
把代入②得:.
【点睛】
本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
22、小亮说的对,CE为2.6m.
【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
【详解】
解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
∵tan∠BAD=,
∴BD=10×tan18°,
∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
在△ABD中,∠CDE=90°﹣∠BAD=72°,
∵CE⊥ED,
∴sin∠CDE=,
∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
∵2.6m<2.7m,且CE⊥AE,
∴小亮说的对.
答:小亮说的对,CE为2.6m.
【点睛】
本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.
23、(1)E(2,1);(2);(1).
【解析】
(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;
(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;
(1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.
【详解】
(1)∵OA=1,OB=4,
∴B(4,0),C(4,1),
∵F是BC的中点,
∴F(4,),
∵F在反比例y=函数图象上,
∴k=4×=6,
∴反比例函数的解析式为y=,
∵E点的坐标为1,
∴E(2,1);
(2)∵F点的横坐标为4,
∴F(4,),
∴CF=BC﹣BF=1﹣=
∵E的纵坐标为1,
∴E(,1),
∴CE=AC﹣AE=4﹣=,
在Rt△CEF中,tan∠EFC=,
(1)如图,由(2)知,CF=,CE=,,
过点E作EH⊥OB于H,
∴EH=OA=1,∠EHG=∠GBF=90°,
∴∠EGH+∠HEG=90°,
由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,
∴∠EGH+∠BGF=90°,
∴∠HEG=∠BGF,
∵∠EHG=∠GBF=90°,
∴△EHG∽△GBF,
∴,
∴,
∴BG=,
在Rt△FBG中,FG2﹣BF2=BG2,
∴()2﹣()2=,
∴k=,
∴反比例函数解析式为y=.
点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.
24、(1)173;(2)点C位于点A的南偏东75°方向.
【解析】
试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.
(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
试题解析:解:(1)如答图,过点A作AD⊥BC于点D.
由图得,∠ABC=75°﹣10°=60°.
在Rt△ABD中,∵∠ABC=60°,AB=100,
∴BD=50,AD=50.
∴CD=BC﹣BD=200﹣50=1.
在Rt△ACD中,由勾股定理得:
AC=(km).
答:点C与点A的距离约为173km.
(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,
∴AB2+AC2=BC2. ∴∠BAC=90°.
∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
答:点C位于点A的南偏东75°方向.
考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.
湖北省武汉新洲区五校联考2022年中考数学猜题卷含解析: 这是一份湖北省武汉新洲区五校联考2022年中考数学猜题卷含解析,共16页。试卷主要包含了答题时请按要求用笔,不等式组的正整数解的个数是,下列运算正确的是等内容,欢迎下载使用。
湖北省武汉市外国语校2021-2022学年中考数学押题试卷含解析: 这是一份湖北省武汉市外国语校2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了如图的立体图形,从左面看可能是,估计-1的值在等内容,欢迎下载使用。
2022年湖北省武汉市蔡甸区八校联盟中考数学押题试卷含解析: 这是一份2022年湖北省武汉市蔡甸区八校联盟中考数学押题试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列图形不是正方体展开图的是等内容,欢迎下载使用。