2022年湖北省恩施州巴东县中考试题猜想数学试卷含解析
展开
这是一份2022年湖北省恩施州巴东县中考试题猜想数学试卷含解析,共17页。试卷主要包含了下列各数中,最小的数是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知,代数式的值为( )
A.-11 B.-1 C.1 D.11
2.下列图形中,主视图为①的是( )
A. B. C. D.
3.下列计算正确的是( )
A. B.0.00002=2×105
C. D.
4.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
﹣2
﹣1
0
1
2
y
8
3
0
﹣1
0
则抛物线的顶点坐标是( )
A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
5.一元二次方程的根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
6.一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是( )
A.7 B.8 C.9 D.10
7.下列各数中,最小的数是
A. B. C.0 D.
8.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
A.4个 B.3个 C.2个 D.1个
9.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于( )
A.25:24 B.16:15 C.5:4 D.4:3
10.在实数﹣ ,0.21, ,, ,0.20202中,无理数的个数为( )
A.1 B.2 C.3 D.4
二、填空题(共7小题,每小题3分,满分21分)
11.如果分式的值为0,那么x的值为___________.
12.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .
13.计算:____.
14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.
15.如图,点A、B、C是⊙O上的三点,且△AOB是正三角形,则∠ACB的度数是 。
16. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
17.如图,点 A 是反比例函数 y=﹣(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.
三、解答题(共7小题,满分69分)
18.(10分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.
小何根据学习函数的经验,将此问题转化为函数问题解决.
小华假设AE的长度为xcm,线段DE的长度为ycm.
(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.
下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
7
8
y/cm
0
1.6
2.5
3.3
4.0
4.7
5.8
5.7
当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:
(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为 cm.
19.(5分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.
20.(8分)已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
21.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.
22.(10分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型
目的地
A村(元/辆)
B村(元/辆)
大货车
800
900
小货车
400
600
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
23.(12分)解不等式组: .
24.(14分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
⑴用含t的代数式表示:AP= ,AQ= .
⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.
【详解】
解:由题意可知:,
原式
故选:D.
【点睛】
此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值
2、B
【解析】
分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.
详解:A、主视图是等腰梯形,故此选项错误;
B、主视图是长方形,故此选项正确;
C、主视图是等腰梯形,故此选项错误;
D、主视图是三角形,故此选项错误;
故选B.
点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.
3、D
【解析】
在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
【详解】
解:A、原式= ;故本选项错误;
B、原式=2×10-5;故本选项错误;
C、原式= ;故本选项错误;
D、原式=;故本选项正确;
故选:D.
【点睛】
分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
4、C
【解析】
分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
详解:当或时,,当时,,
,解得 ,
二次函数解析式为,
抛物线的顶点坐标为,
故选C.
点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
5、A
【解析】
把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.
【详解】
方程有两个不相等的实数根.
故选A.
【点睛】
本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.
6、A
【解析】
设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.
【详解】
设这个多边形的边数为n,依题意得:
180(n-2)=360×3-180,
解之得
n=7.
故选A.
【点睛】
本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.
7、A
【解析】
应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
【详解】
解:因为在数轴上-3在其他数的左边,所以-3最小;
故选A.
【点睛】
此题考负数的大小比较,应理解数字大的负数反而小.
8、B
【解析】
分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a−2a,由4a−2b+c=0得而0
相关试卷
这是一份湖北省恩施州中考数学试卷(含解析版),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份[数学]湖北省恩施州巴东县2024年中考模拟试题(解析版),共18页。试卷主要包含了选择题,填空题,羊二,直金十两;牛二,解答题等内容,欢迎下载使用。
这是一份2024年湖北省恩施州巴东县中考模拟数学试题(原卷版+解析版),文件包含2024年湖北省恩施州巴东县中考模拟数学试题原卷版docx、2024年湖北省恩施州巴东县中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。