2022年湖北省荆州市松滋市达标名校中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长
C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:学*科*网]
2.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A.m> B.m C.m= D.m=
3.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是( )
A. B. C. D.
4.下列运算错误的是( )
A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7
5.已知关于x的不等式组 至少有两个整数解,且存在以3,a,7为边的三角形,则a的整数解有( )
A.4个 B.5个 C.6个 D.7个
6.如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1<y2时( )
A.﹣1<x<l B.0<x<1或x<﹣1
C.﹣1<x<I且x≠0 D.﹣1<x<0或x>1
7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.CB=CD B.∠BCA=∠DCA
C.∠BAC=∠DAC D.∠B=∠D=90°
8.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则cos∠ECB为( )
A. B. C. D.
9.计算(﹣5)﹣(﹣3)的结果等于( )
A.﹣8 B.8 C.﹣2 D.2
10.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
11.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为
A. B. C. D.
12.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)AC的长等于_____;
(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.
14.若3,a,4,5的众数是4,则这组数据的平均数是_____.
15. 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是_______.
16.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .
17.若y=,则x+y= .
18.同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
20.(6分)如下表所示,有A、B两组数:
第1个数
第2个数
第3个数
第4个数
……
第9个数
……
第n个数
A组
﹣6
﹣5
﹣2
……
58
……
n2﹣2n﹣5
B组
1
4
7
10
……
25
……
(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
21.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
22.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17
18
16
13
24
15
28
26
18
19
22
17
16
19
32
30
16
14
15
26
15
32
23
17
15
15
28
28
16
19
对这30个数据按组距3进行分组,并整理、描述和分析如下.
频数分布表
组别
一
二
三
四
五
六
七
销售额
频数
7
9
3
2
2
数据分析表
平均数
众数
中位数
20.3
18
请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
23.(8分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
24.(10分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
(1)求A、B两种品牌的化妆品每套进价分别为多少元?
(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?
25.(10分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.
(1)求证:BP是⊙O的切线;
(2)若sin∠PBC=,AB=10,求BP的长.
26.(12分)-()-1+3tan60°
27.(12分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.
(I)根据题意,填写下表:
月用水量(吨/户)
4
10
16
……
应收水费(元/户)
40
……
(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;
(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题分析:
解:由图形可得出:甲所用铁丝的长度为:2a+2b,
乙所用铁丝的长度为:2a+2b,
丙所用铁丝的长度为:2a+2b,
故三种方案所用铁丝一样长.
故选D.
考点:生活中的平移现象
2、C
【解析】
试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
∴△=32-4×2m=9-8m=0,
解得:m=.
故选C.
3、D
【解析】
甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.
【详解】
解:由于函数的图像经过点,则有
∴图象过第二、四象限,
∵k=-1,
∴一次函数y=x-1,
∴图象经过第一、三、四象限,
故选:D.
【点睛】
本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;
4、D
【解析】
【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.
【详解】A、(m2)3=m6,正确;
B、a10÷a9=a,正确;
C、x3•x5=x8,正确;
D、a4+a3=a4+a3,错误,
故选D.
【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.
5、A
【解析】
依据不等式组至少有两个整数解,即可得到a>5,再根据存在以3,a,7为边的三角形,可得4<a<10,进而得出a的取值范围是5<a<10,即可得到a的整数解有4个.
【详解】
解:解不等式①,可得x<a,
解不等式②,可得x≥4,
∵不等式组至少有两个整数解,
∴a>5,
又∵存在以3,a,7为边的三角形,
∴4<a<10,
∴a的取值范围是5<a<10,
∴a的整数解有4个,
故选:A.
【点睛】
此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
6、B
【解析】
根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1
根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,−1),
∴当y1
【点睛】
本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.
7、B
【解析】
由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.
【详解】
解:在△ABC和△ADC中
∵AB=AD,AC=AC,
∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;
当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;
当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;
当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;
故选:B.
【点睛】
本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.
8、D
【解析】
连接EB,设圆O半径为r,根据勾股定理可求出半径r=4,从而可求出EB的长度,最后勾股定理即可求出CE的长度.利用锐角三角函数的定义即可求出答案.
【详解】
解:连接EB,
由圆周角定理可知:∠B=90°,
设⊙O的半径为r,
由垂径定理可知:AC=BC=4,
∵CD=2,
∴OC=r-2,
∴由勾股定理可知:r2=(r-2)2+42,
∴r=5,
BCE中,由勾股定理可知:CE=2,
∴cos∠ECB==,
故选D.
【点睛】
本题考查垂径定理,涉及勾股定理,垂直定理,解方程等知识,综合程度较高,属于中等题型.
9、C
【解析】分析:减去一个数,等于加上这个数的相反数. 依此计算即可求解.
详解:(-5)-(-3)=-1.
故选:C.
点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号; ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数).
10、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
11、B
【解析】
试题解析:在菱形中,,,所以,,在中,,
因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.
12、A
【解析】
分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.
详解:根据题意得: ,
计算得出:n=20,
故选A.
点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、5 见解析.
【解析】
(1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.
【详解】
(1)AC=;
(2)如图,连接格点M和N,由图可知:
AB=AM=4,
BC=AN=,
AC=MN=,
∴△ABC≌△MAN,
∴∠AMN=∠BAC,
∴∠MAD+∠CAB=∠MAD+∠AMN=90°,
∴MN⊥AC,
易解得△MAN以MN为底时的高为,
∵AB2=AD•AC,
∴AD=AB2÷AC=,
综上可知,MN与AC的交点即为所求D点.
【点睛】
本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.
14、4
【解析】
试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.
试题解析:∵3,a,4,5的众数是4,
∴a=4,
∴这组数据的平均数是(3+4+4+5)÷4=4.
考点:1.算术平均数;2.众数.
15、.
【解析】
试题分析:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°==.故答案为.
考点:特殊角的三角函数值;新定义.
16、1
【解析】
利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
【详解】
解:设AF=a(a<2),则F(a,2),E(2,a),
∴FD=DE=2−a,
∴S△DEF=DF•DE==,
解得a=或a=(不合题意,舍去),
∴F(,2),
把点F(,2)代入
解得:k=1,
故答案为1.
【点睛】
本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.
17、1.
【解析】
试题解析:∵原二次根式有意义,
∴x-3≥0,3-x≥0,
∴x=3,y=4,
∴x+y=1.
考点:二次根式有意义的条件.
18、50°
【解析】【分析】直接利用圆周角定理进行求解即可.
【详解】∵弧AB所对的圆心角是100°,
∴弧AB所对的圆周角为50°,
故答案为:50°.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2);3.
【解析】
试题分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
试题解析:(1)证明:如图1,连接OD、OE、ED.
∵BC与⊙O相切于一点D,
∴OD⊥BC,
∴∠ODB=90°=∠C,
∴OD∥AC,
∵∠B=30°,
∴∠A=60°,
∵OA=OE,
∴△AOE是等边三角形,
∴AE=AO=0D,
∴四边形AODE是平行四边形,
∵OA=OD,
∴四边形AODE是菱形.
(2)解:设⊙O的半径为r.
∵OD∥AC,
∴△OBD∽△ABC.
∴,即8r=6(8﹣r).
解得r=,
∴⊙O的半径为.
如图2,连接OD、DF.
∵OD∥AC,
∴∠DAC=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAC=∠DAO,
∵AF是⊙O的直径,
∴∠ADF=90°=∠C,
∴△ADC∽△AFD,
∴,
∴AD2=AC•AF,
∵AC=6,AF=,
∴AD2=×6=45,
∴AD==3.
点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.
20、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
【解析】
(1)将n=4代入n2-2n-5中即可求解;
(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
【详解】
解:(1))∵A组第n个数为n2-2n-5,
∴A组第4个数是42-2×4-5=3,
故答案为3;
(2)第n个数是.
理由如下:
∵第1个数为1,可写成3×1-2;
第2个数为4,可写成3×2-2;
第3个数为7,可写成3×3-2;
第4个数为10,可写成3×4-2;
……
第9个数为25,可写成3×9-2;
∴第n个数为3n-2;
故答案为3n-2;
(3)不存在同一位置上存在两个数据相等;
由题意得,,
解之得,
由于是正整数,所以不存在列上两个数相等.
【点睛】
本题考查了数字的变化类,正确的找出规律是解题的关键.
21、(1)15人;(2)补图见解析.(3).
【解析】
(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
【详解】
解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
(2)A2的人数为15﹣2﹣6﹣4=3(人)
补全图形,如图所示,
A1所在圆心角度数为:×360°=48°;
(3)画出树状图如下:
共6种等可能结果,符合题意的有3种
∴选出一名男生一名女生的概率为:P=.
【点睛】
本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
22、 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.
【解析】
根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;
从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;
本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.
【详解】
解:(1)在范围内的数据有3个,在范围内的数据有4个,
15出现的次数最大,则众数为15;
(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;
故答案为3,4,15;8;
(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.
因为中位数为18,即大于18与小于18的人数一样多,
所以月销售额定为18万,有一半左右的营业员能达到销售目标.
【点睛】
本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.
23、(1)证明见解析(2)90°(3)AP=CE
【解析】
(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
【详解】
(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(对顶角相等),
∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
(3)、AP=CE
理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS),
∴PA=PC,∠BAP=∠DCP,
∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
∵∠CFP=∠EFD(对顶角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等边三角形,∴PC=CE,∴AP=CE
考点:三角形全等的证明
24、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元
【解析】
(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;
(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.
【详解】
(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.
得
解得:,
答:A、B两种品牌得化妆品每套进价分别为100元,75元.
(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.
根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,
解得,5≤m≤10,
利润是30m+20(50﹣m)=1000+10m,
当m取最大10时,利润最大,
最大利润是1000+100=1100,
所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.
【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
25、(1)证明见解析;(2)
【解析】
(1)连接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根据切线的判定得出即可;
(2)解直角三角形求出BD,求出BC,根据勾股定理求出AD,根据相似三角形的判定和性质求出BE,根据相似三角形的性质和判定求出BP即可.
【详解】
解:(1)连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分∠BAC,
∴∠BAD=∠BAC,
∵∠ADB=90°,
∴∠BAD+∠ABD=90°,
∵∠PBC=∠BAC,
∴∠PBC+∠ABD=90°,
∴∠ABP=90°,即AB⊥BP,
∴PB是⊙O的切线;
(2)∵∠PBC=∠BAD,
∴sin∠PBC=sin∠BAD,
∵sin∠PBC==,AB=10,
∴BD=2,由勾股定理得:AD==4,
∴BC=2BD=4,
∵由三角形面积公式得:AD×BC=BE×AC,
∴4×4=BE×10,
∴BE=8,
∴在Rt△ABE中,由勾股定理得:AE=6,
∵∠BAE=∠BAP,∠AEB=∠ABP=90°,
∴△ABE∽△APB,
∴=,
∴PB===.
【点睛】
本题考查了切线的判定、圆周角定理、勾股定理、解直角三角形、相似三角形的性质和判定等知识点,能综合运用性质定理进行推理是解此题的关键.
26、0
【解析】
根据二次根式的乘法、绝对值、负整数指数幂和特殊角的三角函数值计算,然后进行加减运算.
【详解】
原式=-2+2--2+3=0.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.
27、(Ⅰ)16;66;(Ⅱ)当x≤15时,y=4x;当x>15时,y=6x﹣30;(Ⅲ)居民甲上月用水量为18吨,居民乙用水12吨
【解析】
(Ⅰ)根据题意计算即可;
(Ⅱ)根据分段函数解答即可;
(Ⅲ)根据题意,可以分段利用方程或方程组解决用水量问题.
【详解】
解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;
当月用水量为16吨时,应收水费=15×4+1×6=66元;
故答案为16;66;
(Ⅱ)当x≤15时,y=4x;
当x>15时,y=15×4+(x﹣15)×6=6x﹣30;
(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.
由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126
X=18,
∴居民甲上月用水量为18吨,居民乙用水12吨.
【点睛】
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意在实际问题中,利用方程或方程组是解决问题的常用方法.
湖北省武汉市新洲区达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省武汉市新洲区达标名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若a与5互为倒数,则a=等内容,欢迎下载使用。
2022年湖北省武汉市蔡甸区达标名校中考数学模拟预测题含解析: 这是一份2022年湖北省武汉市蔡甸区达标名校中考数学模拟预测题含解析,共17页。试卷主要包含了-4的相反数是,一元一次不等式2等内容,欢迎下载使用。
2022届张家港市达标名校中考数学模拟预测题含解析: 这是一份2022届张家港市达标名校中考数学模拟预测题含解析,共19页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。