终身会员
搜索
    上传资料 赚现金

    2022年湖北省十堰市十堰外国语校中考数学押题试卷含解析

    立即下载
    加入资料篮
    2022年湖北省十堰市十堰外国语校中考数学押题试卷含解析第1页
    2022年湖北省十堰市十堰外国语校中考数学押题试卷含解析第2页
    2022年湖北省十堰市十堰外国语校中考数学押题试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省十堰市十堰外国语校中考数学押题试卷含解析

    展开

    这是一份2022年湖北省十堰市十堰外国语校中考数学押题试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,直线y=3x+1不经过的象限是,下列事件中,必然事件是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是(  )
    A.有两个不相等实数根 B.有两个相等实数根
    C.有且只有一个实数根 D.没有实数根
    2.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
    A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
    3.函数y=中自变量x的取值范围是
    A.x≥0 B.x≥4 C.x≤4 D.x>4
    4.直线y=3x+1不经过的象限是(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是(  )

    A.7cm B.4cm C.5cm D.3cm
    6.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是(  )
    A. B. C. D.
    7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
    A. B.
    C. D.
    8.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l
    A.-5-5
    9.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为(  )
    A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100
    10.下列事件中,必然事件是(  )
    A.抛掷一枚硬币,正面朝上
    B.打开电视,正在播放广告
    C.体育课上,小刚跑完1000米所用时间为1分钟
    D.袋中只有4个球,且都是红球,任意摸出一球是红球
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.

    12. “若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为_____.
    13.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.

    14.如图,Rt△ABC的直角边BC在x轴上,直线y=x﹣经过直角顶点B,且平分△ABC的面积,BC=3,点A在反比例函数y=图象上,则k=_______.

    15.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.
    16.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.

    17.有三个大小一样的正六边形,可按下列方式进行拼接:
    方式1:如图1;
    方式2:如图2;

    若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为__________.
    三、解答题(共7小题,满分69分)
    18.(10分)我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
    (1)在这项调查中,共调查了多少名学生?
    (2)将两个统计图补充完整;
    (3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

    19.(5分)先化简,再求值:(1﹣)÷,其中a=﹣1.
    20.(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.

    21.(10分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.

    22.(10分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)

    23.(12分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
    组别
    分数段
    频次
    频率
    A
    60≤x<70
    17
    0.17
    B
     70≤x<80
     30
     a
    C
     80≤x<90
     b
     0.45
    D
     90≤x<100
     8
     0.08
    请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.

    24.(14分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    2、B
    【解析】
    试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
    考点:一元二次方程与函数
    3、B
    【解析】
    根据二次根式的性质,被开方数大于等于0,列不等式求解.
    【详解】
    根据题意得:x﹣1≥0,解得x≥1,
    则自变量x的取值范围是x≥1.
    故选B.
    【点睛】
    本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.
    4、D
    【解析】
    利用两点法可画出函数图象,则可求得答案.
    【详解】
    在y=3x+1中,令y=0可得x=-,令x=0可得y=1,
    ∴直线与x轴交于点(-,0),与y轴交于点(0,1),
    其函数图象如图所示,

    ∴函数图象不过第四象限,
    故选:D.
    【点睛】
    本题主要考查一次函数的性质,正确画出函数图象是解题的关键.
    5、A
    【解析】
    过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.
    【详解】
    解:作PD⊥OB于D,
    ∵OP平分∠AOB,PC⊥OA,PD⊥OA,
    ∴PD=PC=6cm,
    则PD的最小值是6cm,
    故选A.
    【点睛】
    考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.
    6、B
    【解析】
    【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
    【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
    故选B.
    【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
    7、C
    【解析】
    试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
    考点:由实际问题抽象出分式方程.
    8、B
    【解析】
    先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.
    【详解】
    ∵ 抛物线y=-x2+mx的对称轴为直线x=2,
    ∴,
    解之:m=4,
    ∴y=-x2+4x,
    当x=2时,y=-4+8=4,
    ∴顶点坐标为(2,4),
    ∵ 关于x的-元二次方程-x2+mx-t=0 (t为实数)在l 当x=1时,y=-1+4=3,
    当x=2时,y=-4+8=4,
    ∴ 3 故选:B
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
    9、A
    【解析】
    利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
    【详解】
    由题意知,蔬菜产量的年平均增长率为x,
    根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
    2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
    即: 80(1+x)2=100,
    故选A.
    【点睛】
    本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.
    10、D
    【解析】
    试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;
    D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.
    故选D.
    点睛:事件分为确定事件和不确定事件.
    必然事件和不可能事件叫做确定事件.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC= ;在Rt△ABD中,tanB=.已知7sinC=3tanB,所以7×=3×,又因AC=14,即可求得BD=1.

    点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.
    12、答案不唯一,如1,2,3;
    【解析】
    分析:设a,b,c是任意实数.若a 详解:设a,b,c是任意实数.若a 则若a 可设a,b,c的值依次1,2,3,(答案不唯一),
    故答案为1,2,3.
    点睛:本题考查了命题的真假,举例说明即可,
    13、1
    【解析】
    连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
    【详解】
    连结BD,如图,

    ∵DC=2AD,
    ∴S△ADB=S△BDC=S△BAC=×6=2,
    ∵AD⊥y轴于点D,AB⊥x轴,
    ∴四边形OBAD为矩形,
    ∴S矩形OBAD=2S△ADB=2×2=1,
    ∴k=1.
    故答案为:1.
    【点睛】
    本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
    14、1
    【解析】
    分析:根据题意得出点B的坐标,根据面积平分得出点D的坐标,利用三角形相似可得点A的坐标,从而求出k的值.
    详解:根据一次函数可得:点B的坐标为(1,0), ∵BD平分△ABC的面积,BC=3
    ∴点D的横坐标1.5, ∴点D的坐标为, ∵DE:AB=1:1,
    ∴点A的坐标为(1,1), ∴k=1×1=1.

    点睛:本题主要考查的是反比例函数的性质以及三角形相似的应用,属于中等难度的题型.得出点D的坐标是解决这个问题的关键.
    15、6
    【解析】
    设这个扇形的半径为,根据题意可得:
    ,解得:.
    故答案为.
    16、(6,4)或(﹣4,﹣6)
    【解析】
    设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.
    【详解】
    解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
    当点P在第一象限时,x+x-2=10,
    解得x=6,
    ∴x-2=4,
    ∴P(6,4);
    当点P在第三象限时,-x-x+2=10,
    解得x=-4,
    ∴x-2=-6,
    ∴P(-4,-6).
    故答案为:(6,4)或(-4,-6).
    【点睛】
    本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.
    17、18 1
    【解析】
    有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.
    【详解】
    解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;
    按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1.

    故答案为:18;1.
    【点睛】
    本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键.

    三、解答题(共7小题,满分69分)
    18、 (1)50名;(2)补图见解析;(3) 刚好抽到同性别学生的概率是
    【解析】
    试题分析:(1)由题意可得本次调查的学生共有:15÷30%;
    (2)先求出C的人数,再求出C的百分比即可;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与刚好抽到同性别学生的情况,再利用概率公式即可求得答案.
    试题解析:(1)根据题意得: 15÷30%=50(名).
    答;在这项调查中,共调查了50名学生;
    (2)图如下:

    (3)用A表示男生,B表示女生,画图如下:

    共有20种情况,同性别学生的情况是8种,
    则刚好抽到同性别学生的概率是.
    19、原式==﹣2.
    【解析】
    分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.
    详解:原式=
    =
    =,
    当a=﹣1时,
    原式==﹣2.
    点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
    20、(1)(2)(-6,0)或(-2,0).
    【解析】
    分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
    详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
    (2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
    点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
    21、见解析
    【解析】
    试题分析:首先根据旋转的性质,找到两组对应点,连接这两组对应点;然后作连接成的两条线段的垂直平分线,两垂直平分线的交点即为旋转中心,据此解答即可.
    解:如图所示,点P即为所求作的旋转中心.

    22、不满足安全要求,理由见解析.
    【解析】
    在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
    【详解】
    解:施工方提供的设计方案不满足安全要求,理由如下:
    在Rt△ABC中,AC=15m,∠ABC=45°,
    ∴BC==15m.
    在Rt△EFG中,EG=15m,∠EFG=37°,
    ∴GF=≈=20m.
    ∵EG=AC=15m,AC⊥BC,EG⊥BC,
    ∴EG∥AC,
    ∴四边形EGCA是矩形,
    ∴GC=EA=2m,
    ∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
    ∴施工方提供的设计方案不满足安全要求.
    23、(1)0.3 ,45;(2)108°;(3).
    【解析】
    (1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
    (2)B组的频率乘以360°即可求得答案;
    (2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
    【详解】
    (1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
    故答案为0.3,45;
    (2)360°×0.3=108°.
    答:扇形统计图中B组对应扇形的圆心角为108°.
    (3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:

    ∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1)60;(2)s=10t-6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B步行到景点C的速度是2米/分钟.
    【解析】
    (1)观察图像得出路程和时间,即可解决问题.
    (2)利用待定系数法求一次函数解析式即可;
    (3)分两种情况讨论即可;
    (4)设乙从B步行到C的速度是x米/分钟,根据当甲到达景点C时,乙与景点C的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.
    【详解】
    (1)甲的速度为60米/分钟.
    (2)当20≤t ≤1时,设s=mt+n,由题意得:,解得:,所以s=10t-6000;
    (3)①当20≤t ≤1时,60t=10t-6000,解得:t=25,25-20=5;
    ②当1≤t ≤60时,60t=100,解得:t=50,50-20=1.
    综上所述:乙出发5分钟和1分钟时与甲在途中相遇.
    (4)设乙从B步行到C的速度是x米/分钟,由题意得:
    5400-100-(90-60) x=360
    解得:x=2.
    答:乙从景点B步行到景点C的速度是2米/分钟.
    【点睛】
    本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.

    相关试卷

    2023年湖北省十堰市中考数学真题(含解析):

    这是一份2023年湖北省十堰市中考数学真题(含解析),共31页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2023年湖北省十堰市中考数学试卷(含解析):

    这是一份2023年湖北省十堰市中考数学试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省武汉市外国语校2021-2022学年中考数学押题试卷含解析:

    这是一份湖北省武汉市外国语校2021-2022学年中考数学押题试卷含解析,共18页。试卷主要包含了如图的立体图形,从左面看可能是,估计-1的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map