年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年湖北省云梦县中考数学模拟预测试卷含解析

    2022年湖北省云梦县中考数学模拟预测试卷含解析第1页
    2022年湖北省云梦县中考数学模拟预测试卷含解析第2页
    2022年湖北省云梦县中考数学模拟预测试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省云梦县中考数学模拟预测试卷含解析

    展开

    这是一份2022年湖北省云梦县中考数学模拟预测试卷含解析,共19页。试卷主要包含了下列各数是不等式组的解是,下列实数中,为无理数的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为(  )
    A.﹣1 B.0 C.1或﹣1 D.2或0
    2.如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为米,那么这两树在坡面上的距离为( )

    A. B. C.5cosα D.
    3.在Rt△ABC中,∠C=90°,那么sin∠B等于(  )
    A. B. C. D.
    4.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于(  )

    A.30°10′ B.29°10′ C.29°50′ D.50°10′
    5.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是(  )
    A. B. C. D.
    6.已知实数a<0,则下列事件中是必然事件的是(  )
    A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0
    7.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是(  )
    年龄
    13
    14
    15
    25
    28
    30
    35
    其他
    人数
    30
    533
    17
    12
    20
    9
    2
    3
    A.平均数 B.众数 C.方差 D.标准差
    8.下列各数是不等式组的解是(  )
    A.0 B. C.2 D.3
    9.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是( )

    A.10 B.12 C.20 D.24
    10.下列实数中,为无理数的是(  )
    A. B. C.﹣5 D.0.3156
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知反比例函数的图像经过点,那么的值是__.
    12.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.

    13.如果不等式组的解集是x<2,那么m的取值范围是_____
    14.已知平面直角坐标系中的点A (2,﹣4)与点B关于原点中心对称,则点B的坐标为_____
    15.已知x=2是一元二次方程x2﹣2mx+4=0的一个解, 则m的值为 .
    16.分解因式x2﹣x=_______________________
    17.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?
    19.(5分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.

    20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
    (1)求证:四边形DBEC是菱形;
    (2)若AD=3, DF=1,求四边形DBEC面积.

    21.(10分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
    (1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?
    (2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)
    22.(10分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:
    (1)收集、整理数据:
    从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:
    B D E A C E D B F C D D D B E C D E E F
    A F F A D C D B D F C F D E C E E E C E
    并将上述数据整理在如下的频数分布表中,请你补充其中的数据:
    志愿服务时间
    A
    B
    C
    D
    E
    F
    频数
    3
    4
       
    10
       
    7
    (2)描述数据:
    根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;
    (3)分析数据:
    ①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;
    ②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为   人;
    (4)问题解决:
    校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.

    23.(12分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.

    24.(14分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
    (1)求证:△ACB∽△BED;
    (2)当AD⊥AC时,求 的值;
    (3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    把x=﹣1代入方程计算即可求出k的值.
    【详解】
    解:把x=﹣1代入方程得:1+2k+k2=0,
    解得:k=﹣1,
    故选:A.
    【点睛】
    此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    2、D
    【解析】
    利用所给的角的余弦值求解即可.
    【详解】
    ∵BC=5米,∠CBA=∠α,∴AB==.
    故选D.

    【点睛】
    本题主要考查学生对坡度、坡角的理解及运用.
    3、A
    【解析】
    根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.
    【详解】

    根据在△ABC中,∠C=90°,
    那么sinB= =,
    故答案选A.
    【点睛】
    本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.
    4、C
    【解析】
    根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.
    【详解】
    ∵AB∥CD,
    ∴∠D=∠A=50°10′,
    ∵∠COD=100°,
    ∴∠C=180°-∠D-∠COD=29°50′.
    故选C.
    【点睛】
    本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.
    5、C
    【解析】
    试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.
    考点:简单几何体的三视图.
    6、B
    【解析】
    A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;
    C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;
    故选B.
    点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    7、B
    【解析】
    分析:根据平均数的意义,众数的意义,方差的意义进行选择.
    详解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数.
    故选B.
    点睛:本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    8、D
    【解析】
    求出不等式组的解集,判断即可.
    【详解】

    由①得:x>-1,
    由②得:x>2,
    则不等式组的解集为x>2,即3是不等式组的解,
    故选D.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    9、B
    【解析】
    根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.
    【详解】
    解:根据图象可知点P在BC上运动时,此时BP不断增大,
    由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,
    由于M是曲线部分的最低点,
    ∴此时BP最小,即BP⊥AC,BP=4,
    ∴由勾股定理可知:PC=3,
    由于图象的曲线部分是轴对称图形,
    ∴PA=3,
    ∴AC=6,
    ∴△ABC的面积为:×4×6=12.
    故选:B.
    【点睛】
    本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.
    10、B
    【解析】
    根据无理数的定义解答即可.
    【详解】
    选项A、是分数,是有理数;
    选项B、是无理数;
    选项C、﹣5为有理数;
    选项D、0.3156是有理数;
    故选B.
    【点睛】
    本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    将点的坐标代入,可以得到-1=,然后解方程,便可以得到k的值.
    【详解】
    ∵反比例函数y=的图象经过点(2,-1),
    ∴-1=
    ∴k=− ;
    故答案为k=−.
    【点睛】
    本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答
    12、或
    【解析】
    分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.
    【详解】
    当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:

    点的坐标为,B点的坐标为,
    点的坐标为;
    当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:

    点的坐标为,B点的坐标为,
    点的坐标为.
    综上所述:这个旋转中心的坐标为或.
    故答案为或.
    【点睛】
    本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.
    13、m≥1.
    【解析】
    分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.
    详解:解第一个不等式得,x<1,
    ∵不等式组的解集是x<1,
    ∴m≥1,
    故答案为m≥1.
    点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.
    14、(﹣2,4)
    【解析】
    根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.
    【详解】
    解:∵点A (2,-4)与点B关于原点中心对称,
    ∴点B的坐标为:(-2,4).
    故答案为:(-2,4).
    【点睛】
    此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.
    15、1.
    【解析】
    试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.
    试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,
    ∴4-4m+4=0,
    ∴m=1.
    考点:一元二次方程的解.
    16、x(x-1)
    【解析】
    x2﹣x
    = x(x-1).
    故答案是:x(x-1).
    17、1
    【解析】
    过点C作CH∥AB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值.
    【详解】
    如下图,过点C作CH∥AB交DE的延长线于点H,
    则,

    ∵DF∥CH,
    ∴,
    ∴,
    ∴,
    同理,
    ∴,
    ∴,解得t=1,t=(舍去),
    故答案为:1.
    【点睛】
    本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.
    【解析】
    分析:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设每套悠悠球的售价为y元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.
    详解:(1)设第一批悠悠球每套的进价是x元,则第二批悠悠球每套的进价是(x+5)元,
    根据题意得:

    解得:x=25,
    经检验,x=25是原分式方程的解.
    答:第一批悠悠球每套的进价是25元.
    (2)设每套悠悠球的售价为y元,
    根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%,
    解得:y≥1.
    答:每套悠悠球的售价至少是1元.
    点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.
    19、木竿PQ的长度为3.35米.
    【解析】
    过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
    试题解析:
    【详解】
    解:过N点作ND⊥PQ于D,

    则四边形DPMN为矩形,
    ∴DN=PM=1.8m,DP=MN=1.1m,
    ∴,
    ∴QD==2.25,
    ∴PQ=QD+DP= 2.25+1.1=3.35(m).
    答:木竿PQ的长度为3.35米.
    【点睛】
    本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
    20、 (1)见解析;(1)4
    【解析】
    (1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;
    (1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
    【详解】
    (1)证明:∵CE∥DB,BE∥DC,
    ∴四边形DBEC为平行四边形.
    又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
    ∴CD=BD=AC,
    ∴平行四边形DBEC是菱形;
    (1)∵点D,F分别是AC,AB的中点,AD=3,DF=1,
    ∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC
    ∴BC=1DF=1.
    又∵∠ABC=90°,
    ∴AB= = = 4.
    ∵平行四边形DBEC是菱形,
    ∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4.

    点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=S△ABC是解(1)的关键.
    21、 (1) 商店购进甲种商品40件,购进乙种商品60件;(2) 应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【解析】
    (1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;
    (2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.
    【详解】
    (1)设购进甲种商品x件,购进乙商品y件,
    根据题意得:

    解得:,
    答:商店购进甲种商品40件,购进乙种商品60件;
    (2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,
    根据题意列得:

    解得:20≤a≤22,
    ∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,
    ∴当a=20时,W有最大值,此时W=900,且100﹣20=80,
    答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
    【点睛】
    此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.
    22、(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4).
    【解析】
    (1)观察统计图即可得解;
    (2)根据题意作图;
    (3)①根据两个统计图解答即可;
    ②根据图1先算出不足10小时的概率再乘以200人即可;
    (4)根据题意画出树状图即可解答.
    【详解】
    解:(1)C的频数为7,E的频数为9;
    故答案为7,9;
    (2)补全频数直方图为:

    (3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;
    ②200×=35,
    所以估计九年级200名团员中参加此次义务劳动的人数约为35人;
    故答案为35;
    (4)画树状图为:

    共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,
    所以两人恰好选在同一个服务点的概率==.
    【点睛】
    本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.
    23、(1)相切,理由见解析;(1)1.
    【解析】
    (1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;
    (1)根据勾股定理得出方程,求出方程的解即可.
    【详解】
    (1)直线BC与⊙O的位置关系是相切,

    理由是:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAB,
    ∴∠OAD=∠CAD,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵∠C=90°,
    ∴∠ODB=90°,即OD⊥BC,
    ∵OD为半径,
    ∴直线BC与⊙O的位置关系是相切;
    (1)设⊙O的半径为R,
    则OD=OF=R,
    在Rt△BDO中,由勾股定理得:OB=BD+OD,
    即(R+1) =(1)+R,
    解得:R=1,
    即⊙O的半径是1.
    【点睛】
    此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.
    24、(1)详见解析;(2) ;(3).
    【解析】
    (1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
    (2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
    (3)想办法证明AB垂直平分CF即可解决问题.
    【详解】
    (1)证明:如图1中,

    ∵DE⊥CB,
    ∴∠ACB=∠E=90°,
    ∵BD是切线,
    ∴AB⊥BD,
    ∴∠ABD=90°,
    ∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
    ∴∠ABC=∠BDE,
    ∴△ACB∽△BED;
    (2)解:如图2中,

    ∵△ACB∽△BED;四边形ACED是矩形,
    ∴BE:DE:BC=1:2:4,
    ∵DF∥BC,
    ∴△GCB∽△GDF,
    ∴=;
    (3)解:如图3中,

    ∵tan∠ABC==,AC=2,
    ∴BC=4,BE=4,DE=8,AB=2,BD=4,
    易证△DBE≌△DBF,可得BF=4=BC,
    ∴AC=AF=2,
    ∴CF⊥AB,设CF交AB于H,
    则CF=2CH=2×.
    【点睛】
    本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.

    相关试卷

    2024年湖北省名校联盟中考数学模拟预测试卷(含解析):

    这是一份2024年湖北省名校联盟中考数学模拟预测试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖北省孝感市云梦县中考数学模拟试卷(含详细答案):

    这是一份2023年湖北省孝感市云梦县中考数学模拟试卷(含详细答案),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    湖北省孝感市云梦县2021-2022学年中考押题数学预测卷含解析:

    这是一份湖北省孝感市云梦县2021-2022学年中考押题数学预测卷含解析,共15页。试卷主要包含了实数的倒数是,已知某几何体的三视图,下列运算正确的是,的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map