2022年湖南省邵阳县中考一模数学试题含解析
展开
这是一份2022年湖南省邵阳县中考一模数学试题含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,-2的绝对值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(共10小题,每小题3分,共30分)1.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1082.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了( )A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%3.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣34.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()A.37 B.38 C.50 D.515.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )A.16+16 B.16+8 C.24+16 D.4+46.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )A.0.86×104 B.8.6×102 C.8.6×103 D.86×1027.等腰三角形一边长等于5,一边长等于10,它的周长是( )A.20 B.25 C.20或25 D.158.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A. B. C. D.9.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是( )A.6 B.8 C.10 D.1210.-2的绝对值是()A.2 B.-2 C.±2 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.12.已知平面直角坐标系中的点A (2,﹣4)与点B关于原点中心对称,则点B的坐标为_____13.如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为__________.14.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.15.函数中,自变量的取值范围是______.16.计算:____.三、解答题(共8题,共72分)17.(8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A7250.01Bmn0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB.(1)如图是yB与x之间函数关系的图象,请根据图象填空:m= ;n= ;(2)写出yA与x之间的函数关系式;(3)选择哪种方式上网学习合算,为什么.18.(8分)解分式方程:.19.(8分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.20.(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.21.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)22.(10分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)23.(12分)如图,在中,是的中点,过点的直线交于点,交 的平行线于点,交于点,连接、.求证:;请你判断与的大小关系,并说明理由.24.先化简,再求值:,其中x=﹣1.
参考答案 一、选择题(共10小题,每小题3分,共30分)1、A【解析】
设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.2、D【解析】设第一季度的原产值为a,则第二季度的产值为 ,第三季度的产值为 ,则则第三季度的产值比第一季度的产值增长了故选D.3、D【解析】
先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.故选:D.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.4、D【解析】试题解析:第①个图形中有 盆鲜花,第②个图形中有盆鲜花,第③个图形中有盆鲜花,…第n个图形中的鲜花盆数为则第⑥个图形中的鲜花盆数为故选C.5、A【解析】
分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=×4=,所以侧面积之和为×2+4×4= 16+16,所以答案选择A项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.6、C【解析】
科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).7、B【解析】
题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【详解】当5为腰时,三边长为5、5、10,而,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长故选B.8、A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.9、B【解析】分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分线, ∴DE=CD=2,∴△ABD的面积 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.10、A【解析】
根据绝对值的性质进行解答即可【详解】解:﹣1的绝对值是:1.故选:A.【点睛】此题考查绝对值,难度不大 二、填空题(本大题共6个小题,每小题3分,共18分)11、210°【解析】
根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.【详解】解:如图:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案为:210°.【点睛】本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12、(﹣2,4)【解析】
根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【详解】解:∵点A (2,-4)与点B关于原点中心对称,
∴点B的坐标为:(-2,4).
故答案为:(-2,4).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.13、16【解析】
设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b= a+=,因为,所以10<<20,解得:<a< ,又因为小长方形的边长为整数,a=4、5、6、7,因为b=,所以5a是3的倍数,即a=6,b==10,m= a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.14、-4【解析】:由反比例函数解析式可知:系数,∵S△AOB=2即,∴;又由双曲线在二、四象限k<0,∴k=-415、【解析】
根据分式有意义的条件是分母不为2;分析原函数式可得关系式x−1≠2,解得答案.【详解】根据题意得x−1≠2,解得:x≠1;故答案为:x≠1.【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为2.16、5.【解析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算. 三、解答题(共8题,共72分)17、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【解析】
(1)由图象知:m=10,n=50;(2)根据已知条件即可求得yA与x之间的函数关系式为:当x≤25时,yA=7;当x>25时,yA=7+(x﹣25)×0.01;(3)先求出yB与x之间函数关系为:当x≤50时,yB=10;当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)yA与x之间的函数关系式为:当x≤25时,yA=7,当x>25时,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,∴yA=;(3)∵yB与x之间函数关系为:当x≤50时,yB=10,当x>50时,yB=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,yA=7,yB=50,∴yA<yB,∴选择A方式上网学习合算,当25<x≤50时.yA=yB,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,yA<yB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当30<x≤50,yA>yB,选择B方式上网学习合算,当x>50时,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴选择B方式上网学习合算,综上所述:当0<x<30时,yA<yB,选择A方式上网学习合算,当x=30时,yA=yB,选择哪种方式上网学习都行,当x>30时,yA>yB,选择B方式上网学习合算.【点睛】本题考查一次函数的应用.18、.【解析】试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.考点:解分式方程.19、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到∠OBP=90°,进而得到∠BOP=60°,由OC=BO,得到∠OBC=∠OCB=30°,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可.试题解析:证明:(1)∵PB是⊙O的切线,∴∠OBP=90°,∠POB=90°-30°=60°.∵OB=OC,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;(2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.20、 (1);(2).【解析】
(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下: 美丽光明美----(美,丽)(光,美)(美,明)丽(美,丽)----(光,丽)(明,丽)光(美,光)(光,丽)----(光,明)明(美,明)(明,丽)(光,明)-------根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21、通信塔CD的高度约为15.9cm.【解析】
过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.【详解】过点A作AE⊥CD于E,则四边形ABDE是矩形,设CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度约为15.9cm.【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.22、(70﹣10)m.【解析】
过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解得到DF的长度;通过解得到CE的长度,则【详解】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在中,∵AF=80m−10m=70m, ∴DF=AF=70m.在中,∵DE=10m, ∴ ∴ 答:障碍物B,C两点间的距离为23、(1)证明见解析;(2)证明见解析.【解析】
(1)利用平行线的性质和中点的定义得到 ,进而得到三角形全等,从而求证结论;(2)利用中垂线的性质和三角形的三边关系进行判断即可.【详解】证明:(1)∵BG∥AC∴∵是的中点∴又∵ ∴△BDG≌△CDF∴(2)由(1)中△BDG≌△CDF∴GD=FD,BG=CF又∵∴ED垂直平分DF∴EG=EF∵在△BEG中,BE+BG>GE,∴>【点睛】本题考查平行线性质的应用、全等三角形的判定和性质的应用及三角形三边关系,熟练掌握相关知识点是解题关键.24、-2.【解析】
根据分式的运算法化解即可求出答案.【详解】解:原式=,当x=﹣1时,原式=.【点睛】熟练运用分式的运算法则.
相关试卷
这是一份真题解析湖南省邵阳县中考数学模拟测评 卷(Ⅰ)(含详解),共37页。试卷主要包含了下列式子中,与是同类项的是等内容,欢迎下载使用。
这是一份2023年湖南省邵阳市邵阳县中考数学一模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖南省邵阳市邵阳县中考数学二模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。