终身会员
搜索
    上传资料 赚现金
    2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析01
    2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析02
    2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析

    展开
    这是一份2022年湖南省长沙市中学雅培粹中学中考数学模拟预测题含解析,共20页。试卷主要包含了计算3–,如图等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如果,那么代数式的值是( )
    A.6 B.2 C.-2 D.-6
    2.已知一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),则m的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    3.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为 ( )

    A.120° B.110° C.100° D.80°
    4.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )

    A. B. C. D.
    5.二次函数的图像如图所示,下列结论正确是( )

    A. B. C. D.有两个不相等的实数根
    6.计算3–(–9)的结果是( )
    A.12 B.–12 C.6 D.–6
    7.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

    A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
    C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
    8.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是(  )

    A.3 B.3.5 C.4 D.5
    9.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是(  )
    A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
    10.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )

    A.44 B.45 C.46 D.47
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.

    12.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=_____度.

    13.若代数式在实数范围内有意义,则x的取值范围是_______.
    14.已知关于x的方程有两个不相等的实数根,则m的最大整数值是 .
    15.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.

    16.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是( )

    A. B. C. D.
    17.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
    三、解答题(共7小题,满分69分)
    18.(10分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
    (1)①已知O为坐标原点,点,,则_________,_________;
    ②点C在直线上,求出的最小值;
    (2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.

    19.(5分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.

    20.(8分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
    解:过点A作AH⊥BC,垂足为H.
    ∵在△ADE中,AD=AE(已知)
    AH⊥BC(所作)
    ∴DH=EH(等腰三角形底边上的高也是底边上的中线)
    又∵BD=CE(已知)
    ∴BD+DH=CE+EH(等式的性质)
    即:BH=   
    又∵   (所作)
    ∴AH为线段   的垂直平分线
    ∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
    ∴   (等边对等角)

    21.(10分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).求直线与双曲线的表达式;过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.

    22.(10分)小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成:
    (1)函数y=自变量的取值范围是   ;
    (2)下表列出了y与x的几组对应值:
    x

    ﹣2

    m




    1

    2

    y



    1

    4
    4

    1



    表中m的值是   ;
    (3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;
    (4)结合函数y=的图象,写出这个函数的性质:   .(只需写一个)

    23.(12分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是   ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.

    24.(14分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:
    ①与y轴的交点不变;②对称轴不变;③一定经过两个定点;
    请判断以上结论是否正确,并说明理由.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.
    【详解】∵3a2+5a-1=0,
    ∴3a2+5a=1,
    ∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,
    故选A.
    【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.
    2、C
    【解析】
    根据题意得出旋转后的函数解析式为y=-x-1,然后根据解析式求得与x轴的交点坐标,结合点的坐标即可得出结论.
    【详解】
    ∵一次函数y=﹣x+2的图象,绕x轴上一点P(m,1)旋转181°,所得的图象经过(1.﹣1),
    ∴设旋转后的函数解析式为y=﹣x﹣1,
    在一次函数y=﹣x+2中,令y=1,则有﹣x+2=1,解得:x=4,
    即一次函数y=﹣x+2与x轴交点为(4,1).
    一次函数y=﹣x﹣1中,令y=1,则有﹣x﹣1=1,解得:x=﹣2,
    即一次函数y=﹣x﹣1与x轴交点为(﹣2,1).
    ∴m==1,
    故选:C.
    【点睛】
    本题考查了一次函数图象与几何变换,解题的关键是求出旋转后的函数解析式.本题属于基础题,难度不大.
    3、D
    【解析】
    先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.
    【详解】
    ∵∠DCF=100°,
    ∴∠DCE=80°,
    ∵AB∥CD,
    ∴∠AEF=∠DCE=80°.
    故选D.
    【点睛】
    本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    4、B
    【解析】
    根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
    【详解】
    解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DCE=∠A,
    ∵∠ACB=90°,∠B=34°,
    ∴∠A=56°,
    ∴∠CDA=∠DCE+∠A=112°,
    故选B.
    【点睛】
    本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
    5、C
    【解析】
    【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;由对称轴为x==1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c<0,结合b=-2a可得 3a+c<0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.
    【详解】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0,故A选项错误;
    ∵对称轴x==1,∴b=-2a,即2a+b=0,故B选项错误;
    当x=-1时, y=a-b+c<0,又∵b=-2a,∴ 3a+c<0,故C选项正确;
    ∵抛物线的顶点为(1,3),
    ∴的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,
    故选C.
    【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.
    6、A
    【解析】
    根据有理数的减法,即可解答.
    【详解】

    故选A.
    【点睛】
    本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
    反数.
    7、A
    【解析】
    作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
    【详解】
    解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
    ∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
    ∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
    同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
    故选A.

    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
    8、A
    【解析】
    根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
    【详解】
    解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
    AP≥AB,
    AP≥3.5,
    故选:A.
    【点睛】
    本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
    9、C
    【解析】
    ∵∠C=90°,
    ∴cosA=,sinA= ,tanA=,cotA=,
    ∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
    ∴只有选项C正确,
    故选C.
    【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
    10、A
    【解析】
    连接正方形的对角线,然后依据正方形的性质进行判断即可.
    【详解】
    解:如图所示:

    ∵四边形为正方形,
    ∴∠1=45°.
    ∵∠1<∠1.
    ∴∠1<45°.
    故选:A.
    【点睛】
    本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、54
    【解析】
    试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;
    第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,
    共有10个正方体,
    ∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,
    ∴搭成的大正方体的共有4×4×4=64个小正方体,
    ∴至少还需要64-10=54个小正方体.
    【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.
    12、1
    【解析】
    根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可.
    【详解】
    解:∵直线m∥n,
    ∴∠2=∠ABC+∠1=30°+20°=1°,
    故答案为:1.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    13、
    【解析】
    先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
    解:∵在实数范围内有意义,
    ∴x-1≥2,
    解得x≥1.
    故答案为x≥1.
    本题考查的是二次根式有意义的条件,即被开方数大于等于2.
    14、1.
    【解析】
    试题分析:∵关于x的方程有两个不相等的实数根,
    ∴.
    ∴m的最大整数值为1.
    考点:1.一元二次方程根的判别式;2.解一元一次不等式.
    15、2
    【解析】
    设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
    【详解】
    作MG⊥DC于G,如图所示:

    设MN=y,PC=x,
    根据题意得:GN=2,MG=|10-1x|,
    在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
    即y1=21+(10-1x)1.
    ∵0<x<10,
    ∴当10-1x=0,即x=2时,y1最小值=12,
    ∴y最小值=2.即MN的最小值为2;
    故答案为:2.
    【点睛】
    本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
    16、C.
    【解析】
    分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO上运动时,∠APB逐渐增大,即可得出答案.
    解答:解:当动点P在OC上运动时,∠APB逐渐减小;
    当P在上运动时,∠APB不变;
    当P在DO上运动时,∠APB逐渐增大.
    故选C.
    17、10%.
    【解析】
    设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
    【详解】
    设平均每次降价的百分率为,根据题意列方程得,

    解得,(不符合题意,舍去),
    答:这个百分率是.
    故答案为.
    【点睛】
    本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.

    三、解答题(共7小题,满分69分)
    18、(1)①3,1;②最小值为3;(1)
    【解析】
    (1)①根据点Q与点P之间的“直距”的定义计算即可;
    ②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
    (1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
    【详解】
    解:(1)①如图1中,

    观察图象可知DAO=1+1=3,DBO=1,
    故答案为3,1.
    ②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
    (ii)当点C在坐标轴上时(,),易得为3;
    (ⅲ)当点C在第二象限时(),可得;
    (ⅳ)当点C在第四象限时(),可得;
    综上所述,当时,取得最小值为3;
    (1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.

    【点睛】
    本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
    失分原因
    第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
    (1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
    (1)不能想到由相似求出GO的值
    19、
    【解析】
    试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.
    试题解析:过O作OF⊥CD,交CD于点F,连接OD,
    ∴F为CD的中点,即CF=DF,
    ∵AE=2,EB=6,
    ∴AB=AE+EB=2+6=8,
    ∴OA=4,
    ∴OE=OA﹣AE=4﹣2=2,
    在Rt△OEF中,∠DEB=30°,
    ∴OF=OE=1,
    在Rt△ODF中,OF=1,OD=4,
    根据勾股定理得:DF==,
    则CD=2DF=2.

    考点:垂径定理;勾股定理.
    20、见解析
    【解析】
    根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.
    【详解】
    过点A作AH⊥BC,垂足为H.
    ∵在△ADE中,AD=AE(已知),
    AH⊥BC(所作),
    ∴DH=EH(等腰三角形底边上的高也是底边上的中线).
    又∵BD=CE(已知),
    ∴BD+DH=CE+EH(等式的性质),
    即:BH=CH.
    ∵AH⊥BC(所作),
    ∴AH为线段BC的垂直平分线.
    ∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).
    ∴∠B=∠C(等边对等角).
    【点睛】
    本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;
    21、(1)直线的表达式为,双曲线的表达方式为;(2)点P的坐标为或
    【解析】
    分析:(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;
    (2)根据直线解析式求得点A坐标,由S△ACP=AC•|yP|=4求得点P的纵坐标,继而可得答案.
    详解:(1)∵直线与双曲线 ()都经过点B(-1,4),


    ∴直线的表达式为,双曲线的表达方式为.

    (2)由题意,得点C的坐标为C(-1,0),直线与x轴交于点A(3,0),

    ∵,

    点P在双曲线上,
    ∴点P的坐标为或.
    点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.
    22、(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y轴对称.
    【解析】
    (1)由分母不等于零可得答案;
    (2)求出y=1时x的值即可得;
    (3)根据表格中的数据,描点、连线即可得;
    (4)由函数图象即可得.
    【详解】
    (1)函数y=的定义域是x≠0,
    故答案为x≠0;
    (2)当y=1时,=1,
    解得:x=1或x=﹣1,
    ∴m=﹣1,
    故答案为﹣1;
    (3)如图所示:

    (4)图象关于y轴对称,
    故答案为图象关于y轴对称.
    【点睛】
    本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.
    23、(1);(2).
    【解析】
    (1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
    (2)画出树状图,然后根据概率公式列式计算即可得解.
    【详解】
    (1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
    ∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
    (2)根据题意画出树状图如下:

    一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
    所以,P(抽出的两张卡片的图形是中心对称图形).
    【点睛】
    本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    24、(1)(2)1(3)①②③
    【解析】
    (1)由抛物线与x轴只有一个交点,可知△=0;
    (2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;
    (3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.
    【详解】
    (1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,
    ∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,
    ∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,
    解得:k1=0,k2=,
    k≠0,
    ∴k=;
    (2)∵AB=2,抛物线对称轴为x=2,
    ∴A、B点坐标为(1,0),(3,0),
    将(1,0)代入解析式,可得k=1,
    (3)①∵当x=0时,y=3,
    ∴二次函数图象与y轴的交点为(0,3),①正确;
    ②∵抛物线的对称轴为x=2,
    ∴抛物线的对称轴不变,②正确;
    ③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,
    令k的系数为0,即x2﹣4x=0,
    解得:x1=0,x2=4,
    ∴抛物线一定经过两个定点(0,3)和(4,3),③正确.
    综上可知:正确的结论有①②③.
    【点睛】
    本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.

    相关试卷

    2024年湖南省长沙市中雅培粹学校中考二模考试数学试题: 这是一份2024年湖南省长沙市中雅培粹学校中考二模考试数学试题,共6页。

    2024年湖南省长沙市中雅培粹学校中考二模考试数学试题: 这是一份2024年湖南省长沙市中雅培粹学校中考二模考试数学试题,共6页。

    湖南省长沙市中学雅培粹学校2022-2023学年数学七下期末预测试题含答案: 这是一份湖南省长沙市中学雅培粹学校2022-2023学年数学七下期末预测试题含答案,共6页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map