终身会员
搜索
    上传资料 赚现金
    2022年湖北省枣阳市重点名校中考联考数学试卷含解析
    立即下载
    加入资料篮
    2022年湖北省枣阳市重点名校中考联考数学试卷含解析01
    2022年湖北省枣阳市重点名校中考联考数学试卷含解析02
    2022年湖北省枣阳市重点名校中考联考数学试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北省枣阳市重点名校中考联考数学试卷含解析

    展开
    这是一份2022年湖北省枣阳市重点名校中考联考数学试卷含解析,共19页。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.若代数式在实数范围内有意义,则x的取值范围是( )
    A. B. C. D.
    2.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为(   )
    A.1     B.-1   C.2    D.-2
    3.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”(  )

    A.3步 B.5步 C.6步 D.8步
    4.下面的几何体中,主(正)视图为三角形的是( )
    A. B. C. D.
    5.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是(  )

    A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c
    6.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )
    A.8×1012 B.8×1013 C.8×1014 D.0.8×1013
    7.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为(  )
    A.0.76×104 B.7.6×103 C.7.6×104 D.76×102
    8.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为(  )
    A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
    9.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是(  )

    A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元
    C.第12天与第30天这两天的日销售利润相等 D.第27天的日销售利润是875元
    10.下列四个图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.
    12.若点(,1)与(﹣2,b)关于原点对称,则=_______.
    13.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.

    14.若不等式组的解集为,则________.
    15.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.

    16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
    《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
    译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”
    设每头牛值金x两,每只羊值金y两,可列方程组为_____.

    三、解答题(共8题,共72分)
    17.(8分)近日,深圳市人民政府发布了《深圳市可持续发展规划》,提出了要做可持续发展的全球创新城市的目标,某初中学校了解学生的创新意识,组织了全校学生参加创新能力大赛,从中抽取了部分学生成绩,分为5组:A组50~60;B组60~70;C组70~80;D组80~90;E组90~100,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.抽取学生的总人数是   人,扇形C的圆心角是   °;补全频数直方图;该校共有2200名学生,若成绩在70分以下(不含70分)的学生创新意识不强,有待进一步培养,则该校创新意识不强的学生约有多少人?

    18.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
    (1)试判断直线CD与⊙O的位置关系,并说明理由;
    (2)若AD=2,AC=,求AB的长.

    19.(8分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.

    (1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
    (2)若tan∠F=,CD=a,请用a表示⊙O的半径;
    (3)求证:GF2﹣GB2=DF•GF.
    20.(8分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
    21.(8分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
    (Ⅰ)如图①,求∠CED的大小;
    (Ⅱ)如图②,当DE=BE时,求∠C的大小.

    22.(10分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
    (1)求该抛物线的函数表达式;
    (2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
    (3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.

    23.(12分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.

    24.(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题解析:要使分式有意义,
    则1-x≠0,
    解得:x≠1.
    故选D.
    2、A
    【解析】
    试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.
    故选A
    3、C
    【解析】
    试题解析:根据勾股定理得:斜边为
    则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,
    故选C
    4、C
    【解析】
    解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.
    5、C
    【解析】
    首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
    【详解】
    解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,
    ∴a+b>0,c﹣b<0
    ∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,
    故答案为a+c.
    故选A.
    6、B
    【解析】
    80万亿用科学记数法表示为8×1.
    故选B.
    点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    7、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:7600=7.6×103,
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、B
    【解析】
    解:3400000=.
    故选B.
    9、C
    【解析】
    试题解析:A、根据图①可得第24天的销售量为200件,故正确;
    B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,
    把(0,25),(20,5)代入得:,
    解得:,
    ∴z=-x+25,
    当x=10时,y=-10+25=15,
    故正确;
    C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,
    把(0,100),(24,200)代入得:,
    解得:,
    ∴y=t+100,
    当t=12时,y=150,z=-12+25=13,
    ∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),
    750≠1950,故C错误;
    D、第30天的日销售利润为;150×5=750(元),故正确.
    故选C
    10、D
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    A、是轴对称图形,不是中心对称图形;
    B、是轴对称图形,不是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形.
    故选D.
    【点睛】
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣1
    【解析】
    根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.
    【详解】
    解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,
    ∴,
    解得:k=,
    ∴原方程为x1+4x+4=0,即(x+1)1=0,
    解得:x=-1.
    故答案为:-1.
    【点睛】
    本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
    12、.
    【解析】
    ∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.
    考点:关于原点对称的点的坐标.
    13、.
    【解析】
    如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
    【详解】
    如图,
    ∵四边形CDEF是正方形,
    ∴CD=ED,DE∥CF,
    设ED=x,则CD=x,AD=12-x,
    ∵DE∥CF,
    ∴∠ADE=∠C,∠AED=∠B,
    ∴△ADE∽△ACB,
    ∴=,
    ∴=,
    ∴x=,
    故答案为.

    【点睛】
    本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
    14、-1
    【解析】
    分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.
    详解:由不等式得x>a+2,x<b,
    ∵-1<x<1,
    ∴a+2=-1,b=1
    ∴a=-3,b=2,
    ∴(a+b)2009=(-1)2009=-1.
    故答案为-1.
    点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
    15、1.
    【解析】
    试题分析:∵四边形ABCD是菱形,
    ∴OD=OB,∠COD=90°,
    ∵DH⊥AB,
    ∴OH=BD=OB,
    ∴∠OHB=∠OBH,
    又∵AB∥CD,
    ∴∠OBH=∠ODC,
    在Rt△COD中,∠ODC+∠DCO=90°,
    在Rt△DHB中,∠DHO+∠OHB=90°,
    ∴∠DHO=∠DCO=×50°=1°.
    考点:菱形的性质.
    16、
    【解析】
    试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.
    考点:二元一次方程组的应用

    三、解答题(共8题,共72分)
    17、(1)300、144;(2)补全频数分布直方图见解析;(3)该校创新意识不强的学生约有528人.
    【解析】
    (1)由D组频数及其所占比例可得总人数,用360°乘以C组人数所占比例可得;
    (2)用总人数分别乘以A、B组的百分比求得其人数,再用总人数减去A、B、C、D的人数求得E组的人数可得;
    (3)用总人数乘以样本中A、B组的百分比之和可得.
    【详解】
    解:(1)抽取学生的总人数为78÷26%=300人,扇形C的圆心角是360°×=144°,
    故答案为300、144;
    (2)A组人数为300×7%=21人,B组人数为300×17%=51人,
    则E组人数为300﹣(21+51+120+78)=30人,
    补全频数分布直方图如下:

    (3)该校创新意识不强的学生约有2200×(7%+17%)=528人.
    【点睛】
    考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.
    18、(1)证明见解析(2)3
    【解析】
    (1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
    (2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
    【详解】
    相切,连接,
    ∵为的中点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,

    ∴直线与相切;
    方法:连接,
    ∵,,
    ∵,
    ∴,
    ∵是的切线,
    ∴,
    ∴,
    ∴,
    ∵为的中点,
    ∴,
    ∵为的直径,
    ∴,
    ∴.
    方法:∵,
    易得,
    ∴,
    ∴.
    【点睛】
    本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
    19、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.
    (2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.
    (3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.
    【详解】
    解:(1)证明:∵OA=OB,
    ∴∠OAB=∠OBA.
    ∵OA⊥CD,
    ∴∠OAB+∠AGC=90°.
    又∵∠FGB=∠FBG,∠FGB=∠AGC,
    ∴∠FBG+∠OBA=90°,即∠OBF=90°.
    ∴OB⊥FB.
    ∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.
    (2)∵AC∥BF,
    ∴∠ACF=∠F.
    ∵CD=a,OA⊥CD,
    ∴CE=CD=a.
    ∵tan∠F=,
    ∴,
    即.
    解得.
    连接OC,设圆的半径为r,则,

    在Rt△OCE中,,
    即,
    解得.
    (3)证明:连接BD,
    ∵∠DBG=∠ACF,∠ACF=∠F(已证),
    ∴∠DBG=∠F.
    又∵∠FGB=∠FGB,
    ∴△BDG∽△FBG.
    ∴,即GB2=DG•GF.
    ∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.
    20、 (1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.
    【解析】
    (1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;
    (2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;
    (3)利用二次函数的性质求出w的最大值,以及此时x的值即可.
    【详解】
    (1)设y=kx+b(k≠0),
    根据题意得,
    解得:k=﹣2,b=220,
    ∴y=﹣2x+220(40≤x≤70);
    (2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;
    (3)w=﹣2(x﹣75)2+21,
    ∵40≤x≤70,
    ∴x=70时,w有最大值为w=﹣2×25+21=2050元,
    ∴当销售单价为70元时,该公司日获利最大,为2050元.
    【点睛】
    此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.
    21、(Ⅰ)68°(Ⅱ)56°
    【解析】
    (1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
    【详解】
    (Ⅰ)∵四边形ABED 圆内接四边形,
    ∴∠A+∠DEB=180°,
    ∵∠CED+∠DEB=180°,
    ∴∠CED=∠A,
    ∵∠A=68°,
    ∴∠CED=68°.
    (Ⅱ)连接AE.
    ∵DE=BD,
    ∴,
    ∴∠DAE=∠EAB=∠CAB=34°,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∴∠AEC=90°,
    ∴∠C=90°﹣∠DAE=90°﹣34°=56°

    【点睛】
    本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
    22、(1)y=x2+2x﹣3;(2);(3)详见解析.
    【解析】
    试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
    (2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
    (3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
    试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
    ∴B(-3,0),
    设抛物线的表达式为y=a(x+3)(x-1),
    将点D(-4,5)代入,得5a=5,解得a=1,
    ∴抛物线的表达式为y=x2+2x-3;
    (2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.

    设点E(m,m2+2m-3),则F(m,-m+1).
    ∴EF=-m+1-m2-2m+3=-m2-3m+4.
    ∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
    ∴△ACE的面积的最大值为;
    (3)当AD为平行四边形的对角线时:
    设点M的坐标为(-1,a),点N的坐标为(x,y).
    ∴平行四边形的对角线互相平分,
    ∴=,=,
    解得x=-2,y=5-a,
    将点N的坐标代入抛物线的表达式,得5-a=-3,
    解得a=8,
    ∴点M的坐标为(-1,8),
    当AD为平行四边形的边时:
    设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
    ∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
    ∴M(-1,16),
    将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
    ∴M(-1,26),
    综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
    23、见解析
    【解析】
    根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,且AD=BC,
    ∴AF∥EC,
    ∵BE=DF,
    ∴AF=EC,
    ∴四边形AECF是平行四边形,
    ∴AE=CF.
    【点睛】
    本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.
    24、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.

    相关试卷

    山南市重点名校2022年中考联考数学试卷含解析: 这是一份山南市重点名校2022年中考联考数学试卷含解析,共21页。试卷主要包含了下列计算正确的是,点A关于原点对称的点的坐标是等内容,欢迎下载使用。

    湖北省武汉市东湖高新区重点达标名校2022年中考联考数学试卷含解析: 这是一份湖北省武汉市东湖高新区重点达标名校2022年中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。

    2022年无锡市南长区重点达标名校中考联考数学试卷含解析: 这是一份2022年无锡市南长区重点达标名校中考联考数学试卷含解析,共18页。试卷主要包含了若分式有意义,则a的取值范围为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map