2022年湖南省长沙市湖南师大附中联考中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )
A. B.π C.π D.π
2.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
A. B.
C. D.
3.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )
A.3 B.4 C.5 D.6
4.下列二次根式中,的同类二次根式是( )
A. B. C. D.
5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
6.如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=(x>0)上,则k的值为( )
A.2 B.3 C.4 D.6
7.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )
A.中位数不相等,方差不相等
B.平均数相等,方差不相等
C.中位数不相等,平均数相等
D.平均数不相等,方差相等
8.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )
A. B. C. D.
9.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )
A.3﹣或1+ B.3﹣或3+
C.3+或1﹣ D.1﹣或1+
10.下列关于事件发生可能性的表述,正确的是( )
A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
二、填空题(共7小题,每小题3分,满分21分)
11.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.
12.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.
13.标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是_____.
14.如果a2﹣a﹣1=0,那么代数式(a﹣)的值是 .
15.关于x的一元二次方程有实数根,则a的取值范围是 __________.
16.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.
17.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.
三、解答题(共7小题,满分69分)
18.(10分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
AQI指数
质量等级
天数(天)
0-50
优
m
51-100
良
44
101-150
轻度污染
n
151-200
中度污染
4
201-300
重度污染
2
300以上
严重污染
2
(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?
19.(5分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.
20.(8分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.
(1)求降价后乙种水果的售价是多少元/斤?
(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?
21.(10分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.
22.(10分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线;
(3)若CF=4,求图中阴影部分的面积.
23.(12分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:
(1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。
(2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.
24.(14分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
过点作,
∵,
∴,,
∴为等腰直角三角形,,
,
∵为等边三角形,
∴,
∴.
∴.故选C.
2、B
【解析】
根据第二象限中点的特征可得: ,
解得: .
在数轴上表示为:
故选B.
考点:(1)、不等式组;(2)、第一象限中点的特征
3、B
【解析】
分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体.故选B.
4、C
【解析】
先将每个选项的二次根式化简后再判断.
【详解】
解:A:,与不是同类二次根式;
B:被开方数是2x,故与不是同类二次根式;
C:=,与是同类二次根式;
D:=2,与不是同类二次根式.
故选C.
【点睛】
本题考查了同类二次根式的概念.
5、C
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
第一个图形不是轴对称图形,是中心对称图形;
第二、三、四个图形是轴对称图形,也是中心对称图形;
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、B
【解析】
作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.
【详解】
作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.
∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=2.
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了坐标与图形变化﹣旋转.
7、D
【解析】
分别利用平均数以及方差和中位数的定义分析,进而求出答案.
【详解】
2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
故中位数不相等,方差相等.
故选:D.
【点睛】
本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
8、A
【解析】
试题分析:观察图形可知,该几何体的主视图是.故选A.
考点:简单组合体的三视图.
9、C
【解析】
∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最大值-5,
可得:-(1-h)2+1=-5,
解得:h=1-或h=1+(舍);
②若1≤x≤3<h,当x=3时,y取得最大值-5,
可得:-(3-h)2+1=-5,
解得:h=3+或h=3-(舍).
综上,h的值为1-或3+,
故选C.
点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.
10、C
【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
【详解】
解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
故选:C.
【点睛】
考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
二、填空题(共7小题,每小题3分,满分21分)
11、4
【解析】
试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.
解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∵EF∥BC,
∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,
∴BE=DE,DF=EC,
∵EF=DE+DF,
∴EF=EB+CF=2BE,
∵等边△ABC的边长为6,
∵EF∥BC,
∴△ADE是等边三角形,
∴EF=AE=2BE,
∴EF==,
故答案为4
考点:等边三角形的判定与性质;平行线的性质.
12、5.
【解析】
试题解析:过E作EM⊥AB于M,
∵四边形ABCD是正方形,
∴AD=BC=CD=AB,
∴EM=AD,BM=CE,
∵△ABE的面积为8,
∴×AB×EM=8,
解得:EM=4,
即AD=DC=BC=AB=4,
∵CE=3,
由勾股定理得:BE==5.
考点:1.正方形的性质;2.三角形的面积;3.勾股定理.
13、奇数.
【解析】
根据概率的意义,分n是偶数和奇数两种情况分析即可.
【详解】
若n为偶数,则奇数与偶数个数相等,即摸得奇数号标签的概率为0.5,
若n为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,
故答案为:奇数.
【点睛】
本题考查概率公式,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
14、1
【解析】
分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣ )的第一个括号内通分,并把分子分解因式后约分化简,然后把a2﹣a=1代入即可.
详解:∵a2﹣a﹣1=0,即a2﹣a=1,
∴原式=
=
=a(a﹣1)
=a2﹣a=1,
故答案为1
点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.
15、a≤1且a≠0
【解析】
∵关于x的一元二次方程有实数根,
∴ ,解得:,
∴a的取值范围为:且 .
点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此 ;
(2)这道一元二次方程有实数根,因此 ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.
16、或
【解析】
分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.
【详解】
当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:
点的坐标为,B点的坐标为,
点的坐标为;
当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:
点的坐标为,B点的坐标为,
点的坐标为.
综上所述:这个旋转中心的坐标为或.
故答案为或.
【点睛】
本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.
17、
【解析】
利用特殊三角形的三边关系,求出AM,AE长,求比值.
【详解】
解:如图所示,设BC=x,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB=BC=x,
根据题意得:AD=BC=x,AE=DE=AB=x,
如图,作EM⊥AD于M,则AM=AD=x,
在Rt△AEM中,cos∠EAD=,
故答案为:.
【点睛】
特殊三角形: 30°-60°-90°特殊三角形,三边比例是1::2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.
三、解答题(共7小题,满分69分)
18、 (1)m=20,n=8;55;(2) 答案见解析.
【解析】
(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;
(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.
【详解】
(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,
∴空气质量等级为“良”的天数占:×100%=55%.
故答案为20,8,55;
(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
补全统计图:
【点睛】
此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
19、(1)见解析;(1)见解析.
【解析】
(1)由全等三角形的判定定理AAS证得结论.
(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.
【详解】
解:(1)证明:如图,∵四边形ABCD是平行四边形,
∴AD∥BC.
又∵点F在CB的延长线上,
∴AD∥CF.
∴∠1=∠1.
∵点E是AB边的中点,
∴AE=BE,
∵在△ADE与△BFE中,,
∴△ADE≌△BFE(AAS).
(1)CE⊥DF.理由如下:
如图,连接CE,
由(1)知,△ADE≌△BFE,
∴DE=FE,即点E是DF的中点,∠1=∠1.
∵DF平分∠ADC,
∴∠1=∠2.
∴∠2=∠1.
∴CD=CF.
∴CE⊥DF.
20、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.
【解析】
(1)设降价后乙种水果的售价是x元, 30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500﹣y)斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.
【详解】
解:(1)设降价后乙种水果的售价是x元,根据题意可得:
,
解得:x=2,经检验x=2是原方程的解,
答:降价后乙种水果的售价是2元/斤;
(2)设至少购进乙种水果y斤,根据题意可得:
2(500﹣y)+1.5y≤900,
解得:y≥200,
答:至少购进乙种水果200斤.
【点睛】
本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键
21、(1)证明见解析(2) (3)EP+EQ= EC
【解析】
(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得 AP=CQ;
作 CH⊥PQ 于 H,由题意可求 PQ=2 ,可得 CH=,根据勾股定理可求
AH= ,即可求 AP 的长;
作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O,由题意可证△CNP≌△ CMQ,可得 CN=CM,QM=PN,即可证 Rt△CEM≌Rt△CEN,EN=EM,∠CEM=
∠CEN=45°,则可求得 EP、EQ、EC 之间的数量关系.
【详解】
解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,
∴∠ACP=∠BCQ 且 AC=BC,CP=CQ
∴△ACP≌△BCQ(SAS)
∴PA=BQ
如图 2 中,作 CH⊥PQ 于 H
∵A、P、Q 共线,PC=2,
∴PQ=2,
∵PC=CQ,CH⊥PQ
∴CH=PH=
在 Rt△ACH 中,AH==
∴PA=AH﹣PH= -
解:结论:EP+EQ= EC
理由:如图 3 中,作 CM⊥BQ 于 M,CN⊥EP 于 N,设 BC 交 AE 于 O.
∵△ACP≌△BCQ,
∴∠CAO=∠OBE,
∵∠AOC=∠BOE,
∴∠OEB=∠ACO=90°,
∵∠M=∠CNE=∠MEN=90°,
∴∠MCN=∠PCQ=90°,
∴∠PCN=∠QCM,
∵PC=CQ,∠CNP=∠M=90°,
∴△CNP≌△CMQ(AAS),
∴CN=CM,QM=PN,
∴CE=CE,
∴Rt△CEM≌Rt△CEN(HL),
∴EN=EM,∠CEM=∠CEN=45°
∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,
∴EP+EQ=EC
【点睛】
本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.
22、(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)欲证明DB=DE.,只要证明∠DBE=∠DEB;
(2)欲证明CF是⊙O的切线.,只要证明BC⊥CF即可;
(3)根据S阴影部分S扇形S△OBD计算即可.
【详解】
解:(1)∵E是△ABC的内心,
∴∠BAE=∠CAE,∠EBA=∠EBC,
∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
∴∠DBE=∠DEB,
∴DB=DE
(2)连接CD
∵DA平分∠BAC,
∴∠DAB=∠DAC,
∴BD=CD,
又∵BD=DF,
∴CD=DB=DF,
∴
∴BC⊥CF,
∴CF是⊙O的切线
(3)连接OD
∵O、D是BC、BF的中点,CF4, ∴OD2.
∵CF是⊙O的切线,
∴
∴△BOD为等腰直角三角形
∴S阴影部分S扇形S△OBD .
【点睛】
本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点.
23、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。
【解析】
试题分析:
(1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;
(2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.
试题解析:
(1)由已知条件可得:被抽查学生总数为32÷40%=80(人),
∴m%=28÷80×100%=35%,
∴m=35,
A组人数为:80-32-28-8=12(人),
将图形统计图补充完整如下图所示:
(2)由题意可得:900×(12÷80×100%)=900×15%=135(人).
答:全校学生对“食品安全知识”非常了解的人数为135人.
24、(1) y=-x2+2x+3;y=x+1;(2)a的值为-3或.
【解析】
(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;
(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;
②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.
【详解】
解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:
解得:b=2,c=3,
∴抛物线的解析式为y=-x2+2x+3;
当y=0时,-x2+2x+3=0,
解得:x=3,或x=-1,
∵B(3,0),
∴A(-1,0);
设直线AD的解析式为y=kx+a,
把A和D的坐标代入得:
解得:k=1,a=1,
∴直线AD的解析式为y=x+1;
(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,
则F点即为(0,3),
∵AE=-1-a=2,
∴a=-3;
②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,
设F (a-3,-3),
由-(a-3)2+2(a-3)+3=-3,
解得:a=;
综上所述,满足条件的a的值为-3或.
【点睛】
本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.
湖南省长沙市湖南师大附中联考2022年中考数学模试卷含解析: 这是一份湖南省长沙市湖南师大附中联考2022年中考数学模试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,计算正确的是等内容,欢迎下载使用。
2022年湖南省长沙市湖南师大附中高新实验中学中考数学押题试卷含解析: 这是一份2022年湖南省长沙市湖南师大附中高新实验中学中考数学押题试卷含解析,共27页。试卷主要包含了不等式3x<2,汽车刹车后行驶的距离s等内容,欢迎下载使用。
2021-2022学年湖南省长沙市教科所中考押题数学预测卷含解析: 这是一份2021-2022学年湖南省长沙市教科所中考押题数学预测卷含解析,共19页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。