终身会员
搜索
    上传资料 赚现金
    2022年湖南省长沙广益中学中考数学适应性模拟试题含解析
    立即下载
    加入资料篮
    2022年湖南省长沙广益中学中考数学适应性模拟试题含解析01
    2022年湖南省长沙广益中学中考数学适应性模拟试题含解析02
    2022年湖南省长沙广益中学中考数学适应性模拟试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省长沙广益中学中考数学适应性模拟试题含解析

    展开
    这是一份2022年湖南省长沙广益中学中考数学适应性模拟试题含解析,共20页。试卷主要包含了计算,若,则等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是(  )

    A.90° B.60° C.45° D.30°
    2.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为(  )
    A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107
    3.若分式的值为0,则x的值为(  )
    A.-2 B.0 C.2 D.±2
    4.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为(  )

    A. B. C. D.
    5.已知点,为是反比例函数上一点,当时,m的取值范围是( )
    A. B. C. D.
    6.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )

    A. B. C. D.
    7.计算(﹣ab2)3的结果是(  )
    A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
    8.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是( )

    A.155° B.145° C.135° D.125°
    9.若,则( )
    A. B. C. D.
    10.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
    型号(厘米)
    38
    39
    40
    41
    42
    43
    数量(件)
    25
    30
    36
    50
    28
    8
    商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
    A.平均数 B.中位数 C.众数 D.方差
    11.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
    A.2 B.3 C.4 D.5
    12.-2的绝对值是()
    A.2 B.-2 C.±2 D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
    ①E为AB的中点;
    ②FC=4DF;
    ③S△ECF=;
    ④当CE⊥BD时,△DFN是等腰三角形.
    其中一定正确的是_____.

    14.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
    15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .

    16.分解因式:a3﹣a=_____.
    17.一元二次方程2x2﹣3x﹣4=0根的判别式的值等于_____.
    18.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元.设小王按原计划购买纪念品 x 个.
    (1)求 x 的范围;
    (2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?
    20.(6分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.
    (1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;
    (2)求证:四边形ABCE是矩形.

    21.(6分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.
    (1)求点D沿三条圆弧运动到点G所经过的路线长;
    (2)判断线段GB与DF的长度关系,并说明理由.

    22.(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.

    请结合图中所给信息解答下列问题:
    (1)本次共调查  名学生;扇形统计图中C所对应扇形的圆心角度数是  ;
    (2)补全条形统计图;
    (3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
    (4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
    23.(8分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
    (1)求证:CF=DF;
    (2)连接OF,若AB=10,BC=6,求线段OF的长.

    24.(10分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.

    25.(10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

    26.(12分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?
    27.(12分)先化简,再求值:(1﹣)÷,其中a=﹣1.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.
    【详解】

    连接AB,
    根据题意得:OB=OA=AB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°.
    故答案选:B.
    【点睛】
    本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.
    2、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    7490000=7.49×106.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、C
    【解析】
    由题意可知:,
    解得:x=2,
    故选C.
    4、D
    【解析】
    连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
    【详解】
    连接CD,如图:

    ,CD=,AC=
    ∵,∴∠ADC=90°,∴tan∠BAC==.
    故选D.
    【点睛】
    本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
    5、A
    【解析】
    直接把n的值代入求出m的取值范围.
    【详解】
    解:∵点P(m,n),为是反比例函数y=-图象上一点,
    ∴当-1≤n<-1时,
    ∴n=-1时,m=1,n=-1时,m=1,
    则m的取值范围是:1≤m<1.
    故选A.
    【点睛】
    此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键.
    6、B
    【解析】
    由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
    【详解】
    ∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
    ∴AE=AB,∠E=∠B=90°,
    又∵四边形ABCD为矩形,
    ∴AB=CD,
    ∴AE=DC,
    而∠AFE=∠DFC,
    ∵在△AEF与△CDF中,

    ∴△AEF≌△CDF(AAS),
    ∴EF=DF;
    ∵四边形ABCD为矩形,
    ∴AD=BC=6,CD=AB=4,
    ∵Rt△AEF≌Rt△CDF,
    ∴FC=FA,
    设FA=x,则FC=x,FD=6-x,
    在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
    则FD=6-x=.
    故选B.
    【点睛】
    考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
    7、D
    【解析】
    根据积的乘方与幂的乘方计算可得.
    【详解】
    解:(﹣ab2)3=﹣a3b6,
    故选D.
    【点睛】
    本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
    法则.
    8、D
    【解析】
    解:∵

    ∵EO⊥AB,


    故选D.
    9、D
    【解析】
    等式左边为非负数,说明右边,由此可得b的取值范围.
    【详解】
    解:,
    ,解得
    故选D.
    【点睛】
    本题考查了二次根式的性质:,.
    10、B
    【解析】
    分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
    详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
    故选:C.
    点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    11、D
    【解析】
    ∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
    解得a=1.故选D. 
    12、A
    【解析】
    根据绝对值的性质进行解答即可
    【详解】
    解:﹣1的绝对值是:1.
    故选:A.
    【点睛】
    此题考查绝对值,难度不大

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、①③④
    【解析】
    由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.
    【详解】
    解:∵ƒM、N是BD的三等分点,
    ∴DN=NM=BM,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥CD,
    ∴△BEM∽△CDM,
    ∴,
    ∴BE=CD,
    ∴BE=AB,故①正确;
    ∵AB∥CD,
    ∴△DFN∽△BEN,
    ∴=,
    ∴DF=BE,
    ∴DF=AB=CD,
    ∴CF=3DF,故②错误;
    ∵BM=MN,CM=2EM,
    ∴△BEM=S△EMN=S△CBE,
    ∵BE=CD,CF=CD,
    ∴=,
    ∴S△EFC=S△CBE=S△MNE,
    ∴S△ECF=,故③正确;
    ∵BM=NM,EM⊥BD,
    ∴EB=EN,
    ∴∠ENB=∠EBN,
    ∵CD∥AB,
    ∴∠ABN=∠CDB,
    ∵∠DNF=∠BNE,
    ∴∠CDN=∠DNF,
    ∴△DFN是等腰三角形,故④正确;
    故答案为①③④.
    【点睛】
    考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.
    14、
    【解析】
    根据概率的概念直接求得.
    【详解】
    解:4÷6=.
    故答案为:.
    【点睛】
    本题用到的知识点为:概率=所求情况数与总情况数之比.
    15、36或4.
    【解析】
    (3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,
    当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=36,得BE=3.
    由翻折的性质,得B′E=BE=3,
    ∴EG=AG﹣AE=8﹣3=5,
    ∴B′G===33,
    ∴B′H=GH﹣B′G=36﹣33=4,
    ∴DB′===;
    (3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);
    (3)当CB′=CD时,
    ∵EB=EB′,CB=CB′,
    ∴点E、C在BB′的垂直平分线上,
    ∴EC垂直平分BB′,
    由折叠可知点F与点C重合,不符合题意,舍去.
    综上所述,DB′的长为36或.故答案为36或.

    考点:3.翻折变换(折叠问题);3.分类讨论.
    16、a(a+1)(a﹣1)
    【解析】
    解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).
    17、41
    【解析】
    已知一元二次方程的根判别式为△=b2﹣4ac,代入计算即可求解.
    【详解】
    依题意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4
    ∴根的判别式为:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41
    故答案为:41
    【点睛】
    本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax2+bx+c=0(a≠0)的根的判别式为△=b2﹣4ac是解决问题的关键.
    18、2
    【解析】
    由题意得出△ABP为等边三角形,在Rt△ACO2中,AO2=即可.
    【详解】
    由题意易知:PO1⊥AB,∵∠APB=60°∴△ABP为等边三角形,AC=BC=3
    ∴圆心角∠AO2O1=60° ∴在Rt△ACO2中,AO2==2.
    故答案为2.
    【点睛】
    本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)0<x≤200,且 x是整数(2)175
    【解析】
    (1)根据商场的规定确定出x的范围即可;
    (2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.
    【详解】
    (1)根据题意得:0<x≤200,且x为整数;
    (2)设小王原计划购买x个纪念品,
    根据题意得:,
    整理得:5x+175=6x,
    解得:x=175,
    经检验x=175是分式方程的解,且满足题意,
    则小王原计划购买175个纪念品.
    【点睛】
    此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.
    20、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意作图即可;
    (2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.
    【详解】
    (1)解:如图所示:E点即为所求;

    (2)证明:∵CE⊥BC,
    ∴∠BCE=90°,
    ∵∠ABC=90°,
    ∴∠BCE+∠ABC=180°,
    ∴AB∥CE,
    ∴∠ABE=∠CEB,∠BAC=∠ECA,
    ∵BD为AC边上的中线,
    ∴AD=DC,
    在△ABD和△CED中

    ∴△ABD≌△CED(AAS),
    ∴AB=EC,
    ∴四边形ABCE是平行四边形,
    ∵∠ABC=90°,
    ∴平行四边形ABCE是矩形.
    【点睛】
    本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.
    21、(1)6π;(2)GB=DF,理由详见解析.
    【解析】
    (1)根据弧长公式l= 计算即可;
    (2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.
    【详解】
    解:(1)∵AD=2,∠DAE=90°,
    ∴弧DE的长 l1= =π,

    同理弧EF的长 l2= =2π,弧FG的长 l3= =3π,
    所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.
    (2)GB=DF.
    理由如下:延长GB交DF于H.
    ∵CD=CB,∠DCF=∠BCG,CF=CG,
    ∴△FDC≌△GBC.
    ∴GB=DF.
    【点睛】
    本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.
    22、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为.
    【解析】
    【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;
    (2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;
    (3)用“非常了解”所占的比例乘以800即可求得;
    (4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.
    【详解】(1)本次调查的学生总人数为24÷40%=60人,
    扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
    故答案为60、90°;
    (2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,
    补全条形图如下:

    (3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
    (4)画树状图为:

    共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为.
    【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.
    23、(1)详见解析;(2)OF=.
    【解析】
    (1)连接OC,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;
    (2)根据勾股定理计算出AC=8,再证明△ABC∽△ABD,利用相似比得到AD=,然后证明OF为△ABD的中位线,从而根据三角形中位线性质求出OF的长.
    【详解】
    (1)证明:连接OC,如图,

    ∵CF为切线,
    ∴OC⊥CF,
    ∴∠1+∠3=90°,
    ∵BM⊥AB,
    ∴∠2+∠4=90°,
    ∵OC=OB,
    ∴∠1=∠2,
    ∴∠3=∠4,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴∠3+∠5=90°,∠4+∠BDC=90°,
    ∴∠BDC=∠5,
    ∴CF=DF;
    (2)在Rt△ABC中,AC==8,
    ∵∠BAC=∠DAB,
    ∴△ABC∽△ABD,
    ∴,即,
    ∴AD=,
    ∵∠3=∠4,
    ∴FC=FB,
    而FC=FD,
    ∴FD=FB,
    而BO=AO,
    ∴OF为△ABD的中位线,
    ∴OF=AD=.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.
    24、证明见解析.
    【解析】
    试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
    试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.
    考点:平行四边形的判定与性质.
    25、电视塔高为米,点的铅直高度为(米).
    【解析】
    过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
    【详解】
    过点P作PF⊥OC,垂足为F.
    在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
    过点P作PB⊥OA,垂足为B.
    由i=1:2,设PB=x,则AB=2x.
    ∴PF=OB=100+2x,CF=100﹣x.
    在Rt△PCF中,由∠CPF=45°,
    ∴PF=CF,即100+2x=100﹣x,
    ∴x= ,即PB=米.

    【点睛】
    本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
    26、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.
    【解析】
    (1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.
    【详解】
    (1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,
    根据题意得:,
    解得:x=900,
    经检验,x=900是原分式方程的解,
    答:二月份每辆车售价是900元;
    (2)设每辆山地自行车的进价为y元,
    根据题意得:900×(1﹣10%)﹣y=35%y,
    解得:y=600,
    答:每辆山地自行车的进价是600元.
    【点睛】
    本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    27、原式==﹣2.
    【解析】
    分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.
    详解:原式=
    =
    =,
    当a=﹣1时,
    原式==﹣2.
    点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.

    相关试卷

    2023年湖南省长沙市华益中学、广益中学、立信中学中考数学一模试卷(含解析): 这是一份2023年湖南省长沙市华益中学、广益中学、立信中学中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年湖南长沙广益中学中考适应性考试数学试题含解析: 这是一份2022年湖南长沙广益中学中考适应性考试数学试题含解析,共18页。试卷主要包含了图为小明和小红两人的解题过程等内容,欢迎下载使用。

    2022年湖南省长沙市湖南广益实验中学中考数学全真模拟试题含解析: 这是一份2022年湖南省长沙市湖南广益实验中学中考数学全真模拟试题含解析,共17页。试卷主要包含了定义,解分式方程时,去分母后变形为,化简等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map