2022年安徽省桐城实验中学中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )
A. B. C. D.
2.如图,是的外接圆,已知,则的大小为
A. B. C. D.
3.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有( )
A.1个 B.2个 C.3个 D.4个
4.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是( )
A.119 B.289 C.77或119 D.119或289
5.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
A. B. C. D.
6.下列说法正确的是( )
A.2a2b与–2b2a的和为0
B.的系数是,次数是4次
C.2x2y–3y2–1是3次3项式
D.x2y3与– 是同类项
7.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是( )
A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)
8.下列交通标志是中心对称图形的为( )
A. B. C. D.
9.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是( )
A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.
10.如图所示的图形为四位同学画的数轴,其中正确的是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,反比例函数y=(x>0)的图象与矩形AOBC的两边AC,BC边相交于E,F,已知OA=3,OB=4,△ECF的面积为,则k的值为_____.
12.因式分解:3a3﹣6a2b+3ab2=_____.
13.写出一个经过点(1,2)的函数表达式_____.
14.计算:a6÷a3=_________.
15.=________
16.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.
(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.
(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =__.
三、解答题(共8题,共72分)
17.(8分)已知OA,OB是⊙O的半径,且OA⊥OB,垂足为O,P是射线OA上的一点(点A除外),直线BP交⊙O于点Q,过Q作⊙O的切线交射线OA于点E.
(1)如图①,点P在线段OA上,若∠OBQ=15°,求∠AQE的大小;
(2)如图②,点P在OA的延长线上,若∠OBQ=65°,求∠AQE的大小.
18.(8分)(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
19.(8分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
20.(8分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:
(1)在这次研究中,一共调查了 学生,并请补全折线统计图;
(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?
21.(8分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).
①求此抛物线的解析式;
②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.
22.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.
(1)求小明选择去白鹿原游玩的概率;
(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
23.(12分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.
24.如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.
(1)a 0, 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.
考点:中心对称图形的概念.
2、A
【解析】
解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°;故选A.
3、C
【解析】
利用“角边角”证明△APE和△CPF全等,根据全等三角形的可得AE=CF,再根据等腰直角三角形的定义得到△EFP是等腰直角三角形,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.
【详解】
∵AB=AC,∠BAC=90°,点P是BC的中点,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,
,
∴△APE≌△CPF(ASA),
∴AE=CF,故①②正确;
∵△AEP≌△CFP,同理可证△APF≌△BPE,
∴△EFP是等腰直角三角形,故③错误;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正确,
故选C.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据同角的余角相等求出∠APE=∠CPF,从而得到△APE和△CPF全等是解题的关键,也是本题的突破点.
4、D
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.
【详解】
解:①当弦AB和CD在圆心同侧时,如图1,
∵AB=24cm,CD=10cm,
∴AE=12cm,CF=5cm,
∴OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=12-5=7cm;
∴四边形ACDB的面积
②当弦AB和CD在圆心异侧时,如图2,
∵AB=24cm,CD=10cm,
∴.AE=12cm,CF=5cm,
∵OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=OF+OE=17cm.
∴四边形ACDB的面积
∴四边形ACDB的面积为119或289.
故选:D.
【点睛】
本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.
5、B
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
【详解】
画树状图如下:
由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
故选B.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
6、C
【解析】
根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.
【详解】
A、2a2b与-2b2a不是同类项,不能合并,此选项错误;
B、πa2b的系数是π,次数是3次,此选项错误;
C、2x2y-3y2-1是3次3项式,此选项正确;
D、x2y3与﹣相同字母的次数不同,不是同类项,此选项错误;
故选C.
【点睛】
本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.
7、B
【解析】
分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.
详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,
又∵A的坐标是(1,1),
结合中点坐标公式可得P1的坐标是(1,0);
同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.
根据对称关系,依次可以求得:
P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),
令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),
∵1010=4×501+1,
∴点P1010的坐标是(1010,﹣1),
故选:B.
点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.
8、C
【解析】
根据中心对称图形的定义即可解答.
【详解】
解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.
【点睛】
本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.
9、C
【解析】
结合图形,逐项进行分析即可.
【详解】
在△ADC和△BAC中,∠ADC=∠BAC,
如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
②,
故选C.
【点睛】
本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
10、D
【解析】
根据数轴三要素:原点、正方向、单位长度进行判断.
【详解】
A选项图中无原点,故错误;
B选项图中单位长度不统一,故错误;
C选项图中无正方向,故错误;
D选项图形包含数轴三要素,故正确;
故选D.
【点睛】
本题考查数轴的画法,熟记数轴三要素是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
设E(,3),F(1,),由题意(1-)(3-)= ,求出k即可;
【详解】
∵四边形OACB是矩形,
∴OA=BC=3,AC=OB=1,
设E(,3),F(1,),
由题意(1-)(3-)=,
整理得:k2-21k+80=0,
解得k=1或20,
k=20时,F点坐标(1,5),不符合题意,
∴k=1
故答案为1.
【点睛】
本题考查了反比例函数系数k的几何意义,解题的关键是会利用参数构建方程解决问题.
12、3a(a﹣b)1
【解析】
首先提取公因式3a,再利用完全平方公式分解即可.
【详解】
3a3﹣6a1b+3ab1,
=3a(a1﹣1ab+b1),
=3a(a﹣b)1.
故答案为:3a(a﹣b)1.
【点睛】
此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.
13、y=x+1(答案不唯一)
【解析】
本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.
【详解】
解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,…答案不唯一.
故答案可以是:y=x+1(答案不唯一).
【点睛】
本题考查函数,解题的关键是清楚几种函数的一般式.
14、a1
【解析】
根据同底数幂相除,底数不变指数相减计算即可
【详解】
a6÷a1=a6﹣1=a1.故答案是a1
【点睛】
同底数幂的除法运算性质
15、13
【解析】
=2+9-4+6
=13.
故答案是:13.
16、4 ﹣
【解析】
解:(1)当a=1时,抛物线L的解析式为:y=x1,
当y=1时,1=x1,
∴x=±,
∵B在第一象限,
∴A(﹣,1),B(,1),
∴AB=1,
∵向右平移抛物线L使该抛物线过点B,
∴AB=BC=1,
∴AC=4;
(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,
设OK=t,则AB=BC=1t,
∴B(t,at1),
根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,
∴O(0,0),G(4t,0),
设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),
y=a3x(x﹣4t),
∵该抛物线过点B(t,at1),
∴at1=a3t(t﹣4t),
∵t≠0,
∴a=﹣3a3,
∴=﹣,
故答案为(1)4;(1)﹣.
点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.
三、解答题(共8题,共72分)
17、(1)30°;(2)20°;
【解析】
(1)利用圆切线的性质求解;
(2) 连接OQ,利用圆的切线性质及角之间的关系求解。
【详解】
(1)如图①中,连接OQ.
∵EQ是切线,
∴OQ⊥EQ,
∴∠OQE=90°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠AQB=∠AOB=45°,
∵OB=OQ,
∴∠OBQ=∠OQB=15°,
∴∠AQE=90°﹣15°﹣45°=30°.
(2)如图②中,连接OQ.
∵OB=OQ,
∴∠B=∠OQB=65°,
∴∠BOQ=50°,
∵∠AOB=90°,
∴∠AOQ=40°,
∵OQ=OA,
∴∠OQA=∠OAQ=70°,
∵EQ是切线,
∴∠OQE=90°,
∴∠AQE=90°﹣70°=20°.
【点睛】
此题主要考查圆的切线的性质及圆中集合问题的综合运等.
18、(1)见解析;(2)6或
【解析】
试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
试题解析:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=DC
在Rt△ABD中,AB=
∴四边形BDFC的面积为S=×3=6;
②若BD=DC
过D作BC的垂线,则垂足为BC得中点,不可能;
③若BC=DC
过D作DG⊥BC,垂足为G
在Rt△CDG中,DG=
∴四边形BDFC的面积为S=.
考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积
19、(1)m=3,k=12;(2)或
【解析】
【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.
【详解】
解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=的图像上,
∴k=xy,
∴k=m(m+1)=(m+3)(m-1),
∴m2+m=m2+2m-3,解得m=3,
∴k=3×(3+1)=12.
(2)∵m=3,
∴A(3,4),B(6,2).
设直线AB的函数表达式为y=k′x+b(k′≠0),
则
解得
∴直线AB的函数表达式为y=-x+6.
(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).
解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.
∵由(1)知:A(3,4),B(6,2),
∴AP=PM=2,BP=PN=3,
∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).
【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.
20、(1)200名;折线图见解析;(2)1210人.
【解析】
(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图;
(2)利用样本估计总体的方法计算即可解答.
【详解】
(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).
补全折线统计图如下:
.
(2)2200×=1210(人).
答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.
【点睛】
本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.
21、(1)①;②n≤1;(2)ac≤1,见解析.
【解析】
(1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;
②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;
(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,当1<x<c时,y>1. ≥c,b≥2ac,ac+1≥2ac,ac≥1;
【详解】
解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,
△=(b+1)2=1,b=﹣1,
平移后的抛物线y=a(x﹣1)2﹣b(x﹣1)过点(3,1),
∴4a﹣2b=1,
∴a=﹣,b=﹣1,
原抛物线:y=﹣x2+x,
②其顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),
∴关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n.
由得:x2+2n=1有解,所以n≤1.
(2)由题知:a>1,将此抛物线y=ax2﹣bx向上平移c个单位(c>1),
其解析式为:y=ax2﹣bx+c过点(c,1),
∴ac2﹣bc+c=1 (c>1),
∴ac﹣b+1=1,b=ac+1,
且当x=1时,y=c,
对称轴:x=,抛物线开口向上,画草图如右所示.
由题知,当1<x<c时,y>1.
∴≥c,b≥2ac,
∴ac+1≥2ac,ac≤1;
【点睛】
本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.
22、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
23、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
【解析】
(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.
【详解】
(1)设每个月生产成本的下降率为x,
根据题意得:400(1﹣x)2=361,
解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%;
(2)361×(1﹣5%)=342.95(万元),
答:预测4月份该公司的生产成本为342.95万元.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
24、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
【解析】
(1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
(2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
(3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
【详解】
(1)a>0,>0;
(2)∵直线x=2是对称轴,A(﹣2,0),
∴B(6,0),
∵点C(0,﹣4),
将A,B,C的坐标分别代入,解得:,,,
∴抛物线的函数表达式为;
(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,
则四边形ACEF即为满足条件的平行四边形,
∵抛物线关于直线x=2对称,
∴由抛物线的对称性可知,E点的横坐标为4,
又∵OC=4,∴E的纵坐标为﹣4,
∴存在点E(4,﹣4);
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
∵AC∥E′F′,
∴∠CAO=∠E′F′G,
又∵∠COA=∠E′GF′=90°,AC=E′F′,
∴△CAO≌△E′F′G,
∴E′G=CO=4,
∴点E′的纵坐标是4,
∴,解得:,,
∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).
安徽省桐城实验中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份安徽省桐城实验中学2021-2022学年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,AB∥CD,那么,方程x2﹣3x=0的根是等内容,欢迎下载使用。
2022年西藏拉萨市北京实验中学中考数学押题卷含解析: 这是一份2022年西藏拉萨市北京实验中学中考数学押题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,下列运算错误的是等内容,欢迎下载使用。
2022届湖北省黄冈实验中学中考押题数学预测卷含解析: 这是一份2022届湖北省黄冈实验中学中考押题数学预测卷含解析,共19页。试卷主要包含了计算的结果是等内容,欢迎下载使用。