年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年安徽省合肥市蜀山区重点中学中考数学全真模拟试卷含解析

    2022年安徽省合肥市蜀山区重点中学中考数学全真模拟试卷含解析第1页
    2022年安徽省合肥市蜀山区重点中学中考数学全真模拟试卷含解析第2页
    2022年安徽省合肥市蜀山区重点中学中考数学全真模拟试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽省合肥市蜀山区重点中学中考数学全真模拟试卷含解析

    展开

    这是一份2022年安徽省合肥市蜀山区重点中学中考数学全真模拟试卷含解析,共25页。试卷主要包含了若a+b=3,,则ab等于等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )

    A. B. C. D.
    2.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有(  )

    A.4个 B.3个 C.2个 D.1个
    3.关于的不等式的解集如图所示,则的取值是  

    A.0 B. C. D.
    4.下列各式属于最简二次根式的有( )
    A. B. C. D.
    5.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )

    A.50° B.60° C.70° D.80°
    6.若a+b=3,,则ab等于( )
    A.2 B.1 C.﹣2 D.﹣1
    7.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为

    A.75 B.89 C.103 D.139
    8.若kb<0,则一次函数的图象一定经过( )
    A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
    9.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为  
    A. B. C. D.
    10.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为(  )

    A. B. C. D.
    11.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为(  )

    A.1 B. C.-1 D.+1
    12.的值是  
    A.±3 B.3 C.9 D.81
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.
    14.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
    15.因式分解:3x2-6xy+3y2=______.
    16.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.
    17.关于的方程有两个不相等的实数根,那么的取值范围是__________.
    18.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
    分组
    频数
    频率
    0.5~50.5
       
    0.1
    50.5~   
    20
    0.2
    100.5~150.5
       
       
       200.5
    30
    0.3
    200.5~250.5
    10
    0.1
    率分布表和频率分布直方图(如图).

    (1)补全频率分布表;
    (2)在频率分布直方图中,长方形ABCD的面积是   ;这次调查的样本容量是   ;
    (3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
    20.(6分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

    (1)这次被调查的同学共有名;
    (2)补全条形统计图;
    (3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
    (4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
    21.(6分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
    方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
    方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
    (1)若顾客选择方式一,则享受优惠的概率为   ;
    (2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.

    22.(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

    (1)求证:DE⊥AG;
    (1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
    ①在旋转过程中,当∠OAG′是直角时,求α的度数;
    ②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
    23.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地   千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.

    24.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
    (1)求这条抛物线的表达式;
    (2)求∠ACB的度数;
    (3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.

    25.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:

    (1)2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
    (2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
    (3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
    26.(12分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
    (1)求点D的坐标.
    (2)求点M的坐标(用含a的代数式表示).
    (3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.

    27.(12分)已知平行四边形.
    尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    连接CD,交MN于E,
    ∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
    ∴MN⊥CD,且CE=DE.∴CD=2CE.
    ∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
    ∴.
    ∵在△CMN中,∠C=90°,MC=6,NC=,∴
    ∴.
    ∴.故选C.
    2、A
    【解析】
    ①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
    ②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
    ③正确.只要证明DM垂直平分CF,即可证明;
    ④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
    【详解】
    如图,过D作DM∥BE交AC于N.
    ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
    ∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
    ∵AD∥BC,∴△AEF∽△CBF,∴=.
    ∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
    ∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
    ∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
    设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
    故选A.

    【点睛】
    本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
    3、D
    【解析】
    首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;
    【详解】
    解:不等式,
    解得x

    相关试卷

    2024年安徽省合肥市蜀山区中考模拟数学试卷:

    这是一份2024年安徽省合肥市蜀山区中考模拟数学试卷,共3页。

    2024年安徽省合肥市蜀山区中考模拟数学试卷:

    这是一份2024年安徽省合肥市蜀山区中考模拟数学试卷,共3页。

    2024年安徽省合肥市蜀山区中考数学二模试卷(含解析):

    这是一份2024年安徽省合肥市蜀山区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map