搜索
    上传资料 赚现金
    英语朗读宝

    2022年北京石景山达标名校中考适应性考试数学试题含解析

    2022年北京石景山达标名校中考适应性考试数学试题含解析第1页
    2022年北京石景山达标名校中考适应性考试数学试题含解析第2页
    2022年北京石景山达标名校中考适应性考试数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年北京石景山达标名校中考适应性考试数学试题含解析

    展开

    这是一份2022年北京石景山达标名校中考适应性考试数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,函数的图像位于,下列计算正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.-4的相反数是( )
    A. B. C.4 D.-4
    2.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是(  )

    A. B. C. D.
    3.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.(  )
    A.3,2 B.3,4 C.5,2 D.5,4
    4.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为( )

    A.5 B.6 C.8 D.12
    5.若2m﹣n=6,则代数式m-n+1的值为(  )
    A.1 B.2 C.3 D.4
    6.滴滴快车是一种便捷的出行工具,计价规则如下表:
    计费项目

    里程费

    时长费

    远途费

    单价

    1.8元/公里

    0.3元/分钟

    0.8元/公里

    注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.

    小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
    A.10分钟 B.13分钟 C.15分钟 D.19分钟
    7.下面调查中,适合采用全面调查的是(  )
    A.对南宁市市民进行“南宁地铁1号线线路”
    B.对你安宁市食品安全合格情况的调查
    C.对南宁市电视台《新闻在线》收视率的调查
    D.对你所在的班级同学的身高情况的调查
    8.函数的图像位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    9.下列计算正确的是(  )
    A.(a)=a B.a+a=a
    C.(3a)•(2a)=6a D.3a﹣a=3
    10.若分式方程无解,则a的值为(  )
    A.0 B.-1 C.0或-1 D.1或-1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.

    12.化简:÷(﹣1)=_____.
    13.因式分解:____________.
    14.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.
    15.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.

    16.已知,则=_______.
    三、解答题(共8题,共72分)
    17.(8分)(1)计算:(1﹣)0﹣|﹣2|+;
    (2)如图,在等边三角形ABC中,点D,E分别是边BC,AC的中点,过点E作EF⊥DE,交BC的延长线于点F,求∠F的度数.

    18.(8分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:
    学生体能测试成绩各等次人数统计表
    体能等级
    调整前人数
    调整后人数
    优秀
    8
       
    良好
    16
       
    及格
    12
       
    不及格
    4
       
    合计
    40
       
    (1)填写统计表;
    (2)根据调整后数据,补全条形统计图;
    (3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.

    19.(8分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.

    (1)求证:PD是⊙O的切线;
    (2)若AB=4,DA=DP,试求弧BD的长;
    (3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
    20.(8分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.

    21.(8分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
    (1)如图1,线段EH、CH、AE之间的数量关系是   ;
    (2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.

    22.(10分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。
    (1)求二次函数的表达式;
    (2)若一次函数y=kx+b(k≠0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;
    (3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且m>n,结合图象求x0的取值范围.

    23.(12分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
    24.如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F.
    (1)求圆O的半径;
    (2)如果AE=6,求EF的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据相反数的定义即可求解.
    【详解】
    -4的相反数是4,故选C.
    【点晴】
    此题主要考查相反数,解题的关键是熟知相反数的定义.
    2、C
    【解析】
    根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
    【详解】
    ∵△ABC为等边三角形,
    ∴∠B=∠C=60°,BC=AB=a,PC=a-x.
    ∵∠APD=60°,∠B=60°,
    ∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
    ∴∠BAP=∠CPD,
    ∴△ABP∽△PCD,
    ∴,即,
    ∴y=- x2+x.
    故选C.
    【点睛】
    考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
    3、B
    【解析】
    试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.
    考点: 平均数;方差.
    4、B
    【解析】
    试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.
    故选B.

    考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质
    5、D
    【解析】
    先对m-n+1变形得到(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.
    【详解】
    mn+1
    =(2m﹣n)+1
    当2m﹣n=6时,原式=×6+1=3+1=4,故选:D.
    【点睛】
    本题考查代数式,解题的关键是掌握整体代入法.
    6、D
    【解析】
    设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.
    【详解】
    设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
    1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),
    10.8+0.3x=16.5+0.3y,
    0.3(x-y)=5.7,
    x-y=19,
    故答案为D.
    【点睛】
    本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.
    7、D
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
    【详解】
    A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;
    B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;
    C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;
    D、对你所在的班级同学的身高情况的调查适宜采用普查方式;
    故选D.
    【点睛】
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    8、D
    【解析】
    根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
    【详解】
    解:函数的图象位于第四象限.
    故选:D.
    【点睛】
    此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
    9、A
    【解析】
    根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
    【详解】
    A.(a2)3=a2×3=a6,故本选项正确;
    B.a2+a2=2a2,故本选项错误;
    C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
    D.3a﹣a=2a,故本选项错误.
    故选A.
    【点睛】
    本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
    10、D
    【解析】
    试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
    整理得:x(1-a)=2a,
    当1-a=0时,即a=1,整式方程无解,
    当x+1=0,即x=-1时,分式方程无解,
    把x=-1代入x(1-a)=2a得:-(1-a)=2a,
    解得:a=-1,
    故选D.
    点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    根据垂径定理求得BD,然后根据勾股定理求得即可.
    【详解】
    解:∵OD⊥BC,
    ∴BD=CD=BC=3,
    ∵OB=AB=5,
    ∴在Rt△OBD中,OD==1.
    故答案为1.
    【点睛】
    本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.
    12、﹣.
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式


    .
    故答案为:.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    13、3(x-2)(x+2)
    【解析】
    先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.
    【详解】
    原式=3(x2﹣4)=3(x-2)(x+2).
    故答案为3(x-2)(x+2).
    【点睛】
    本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
    14、9.2×10﹣1.
    【解析】
    根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
    【详解】
    根据科学记数法的正确表示形式可得:
    0.00092用科学记数法表示是9.2×10﹣1.
    故答案为: 9.2×10﹣1.
    【点睛】
    本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.
    15、
    【解析】
    由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.
    【详解】
    ∵四边形ABCD、CEFG均为正方形,
    ∴CD=AD=3,CG=CE=5,
    ∴DG=2,
    在Rt△DGF中, DF==,
    ∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,
    ∴∠FDG=∠IDA.
    又∵∠DAI=∠DGF,
    ∴△DGF∽△DAI,
    ∴,即,解得:DI=,
    ∴矩形DFHI的面积是=DF•DI=,
    故答案为:.
    【点睛】
    本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.
    16、3
    【解析】
    依据可设a=3k,b=2k,代入化简即可.
    【详解】
    ∵,
    ∴可设a=3k,b=2k,
    ∴=3
    故答案为3.
    【点睛】
    本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.

    三、解答题(共8题,共72分)
    17、(1)﹣1+3;(2)30°.
    【解析】
    (1) 根据零指数幂、 绝对值、 二次根式的性质求出每一部分的值, 代入求出即可;
    (2)根据平行线的性质可得∠EDC=∠B=,根据三角形内角和定理即可求解;
    【详解】
    解:(1)原式=1﹣2+3=﹣1+3;
    (2)∵△ABC是等边三角形,
    ∴∠B=60°,
    ∵点D,E分别是边BC,AC的中点,
    ∴DE∥AB,
    ∴∠EDC=∠B=60°,
    ∵EF⊥DE,
    ∴∠DEF=90°,
    ∴∠F=90°﹣∠EDC=30°.
    【点睛】
    (1) 主要考查零指数幂、 绝对值、 二次根式的性质;
    (2)考查平行线的性质和三角形内角和定理.
    18、(1)12;22;12;4;50;(2)详见解析;(3)1.
    【解析】
    (1)求出各自的人数,补全表格即可;
    (2)根据调整后的数据,补全条形统计图即可;
    (3)根据“游戏”人数占的百分比,乘以1500即可得到结果.
    【详解】
    解:(1)填表如下:
    体能等级
    调整前人数
    调整后人数
    优秀
    8
    12
    良好
    16
    22
    及格
    12
    12
    不及格
    4
    4
    合计
    40
    50
    故答案为12;22;12;4;50;
    (2)补全条形统计图,如图所示:

    (3)抽取的学生中体能测试的优秀率为24%,
    则该校体能测试为“优秀”的人数为1500×24%=1(人).
    【点睛】
    本题考查了统计表与条形统计图的知识点,解题的关键是熟练的掌握统计表与条形统计图的相关知识点.
    19、(1)见解析;(2);(3).
    【解析】
    (1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
    (2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
    (3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
    【详解】
    (1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
    ∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
    又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
    且D在圆上,∴PD是⊙O的切线.
    (2)设∠A=x,
    ∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
    在△ABD中,
    ∠A+∠ABD=90o,x=2x=90o,即x=30o,
    ∴∠DOB=60o,∴弧BD长.

    (3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
    ∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
    在Rt△BDF中,DF=,
    由△OMN∽△FDN得.
    【点睛】
    本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
    20、有触礁危险,理由见解析.
    【解析】
    试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.
    试题解析:有触礁危险.理由:过点P作PD⊥AC于D.

    设PD为x,
    在Rt△PBD中,∠PBD=90°-45°=45°.
    ∴BD=PD=x.
    在Rt△PAD中,
    ∵∠PAD=90°-60°=30°
    ∴AD=
    ∵AD=AB+BD
    ∴x=12+x
    ∴x=
    ∵6(+1)<18
    ∴渔船不改变航线继续向东航行,有触礁危险.
    【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键.
    21、 (1) EH2+CH2=AE2;(2)见解析.
    【解析】
    分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
    (2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
    详解:
    (1)EH2+CH2=AE2,
    如图1,过E作EM⊥AD于M,
    ∵四边形ABCD是菱形,
    ∴AD=CD,∠ADE=∠CDE,
    ∵EH⊥CD,
    ∴∠DME=∠DHE=90°,
    在△DME与△DHE中,

    ∴△DME≌△DHE,
    ∴EM=EH,DM=DH,
    ∴AM=CH,
    在Rt△AME中,AE2=AM2+EM2,
    ∴AE2=EH2+CH2;
    故答案为:EH2+CH2=AE2;
    (2)如图2,
    ∵菱形ABCD,∠ADC=60°,
    ∴∠BDC=∠BDA=30°,DA=DC,
    ∵EH⊥CD,
    ∴∠DEH=60°,
    在CH上截取HG,使HG=EH,
    ∵DH⊥EG,∴ED=DG,
    又∵∠DEG=60°,
    ∴△DEG是等边三角形,
    ∴∠EDG=60°,
    ∵∠EDG=∠ADC=60°,
    ∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
    ∴∠ADE=∠CDG,
    在△DAE与△DCG中,

    ∴△DAE≌△DCG,
    ∴AE=GC,
    ∵CH=CG+GH,
    ∴CH=AE+EH.

    点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.
    22、 (1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.
    【解析】
    (1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式,确定新抛物线的对称轴以及Q的对称点Q′,根据m>n结合图像即可得到x0的取值范围.
    【详解】
    (1)把M(2,-3)代入y=x2+ax+2a+1,可以得到1+2a+2a+1=-3,a=-2,
    因此,二次函数的表达式为:y=x2-2x-3;
    (2)y=x2-2x-3与x轴的交点是:(3,0),(-1,0).
    当y=kx+b(k≠0)经过(3,0)时,3k+b=0;
    当y=kx+b(k≠0)经过(-1,0)时,k=b.
    (3)将二次函数y=x2-2x-3的图象向右平移2个单位得到y=x2-6x+5,
    对称轴是直线x=3,因此Q(2,n)在图象上的对称点是(1,n),
    若点P(x0,m)使得m>n,结合图象可以得出x0<2或x0>1.
    【点睛】
    本题主要考查二次函数的图像和性质,熟练掌握这些知识点是解题的关键.
    23、每件衬衫应降价1元.
    【解析】
    利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.
    【详解】
    解:设每件衬衫应降价x元.
    根据题意,得 (40-x)(1+2x)=110,
    整理,得x2-30x+10=0,
    解得x1=10,x2=1.
    ∵“扩大销售量,减少库存”,
    ∴x1=10应舍去,
    ∴x=1.
    答:每件衬衫应降价1元.
    【点睛】
    此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
    24、 (1) 圆的半径为4.5;(2) EF=.
    【解析】
    (1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;
    (2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.
    【详解】
    (1)连接OD,
    ∵直径AB⊥弦CD,CD=4,
    ∴DH=CH=CD=2,
    在Rt△ODH中,AH=5,
    设圆O的半径为r,
    根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,
    解得:r=4.5,
    则圆的半径为4.5;
    (2)过O作OG⊥AE于G,
    ∴AG=AE=×6=3,
    ∵∠A=∠A,∠AGO=∠AHF,
    ∴△AGO∽△AHF,
    ∴,
    ∴,
    ∴AF=,
    ∴EF=AF﹣AE=﹣6=.

    【点睛】
    本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.

    相关试卷

    2022年青岛市重点达标名校中考适应性考试数学试题含解析:

    这是一份2022年青岛市重点达标名校中考适应性考试数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年广西钦州市达标名校中考适应性考试数学试题含解析:

    这是一份2022年广西钦州市达标名校中考适应性考试数学试题含解析,共16页。试卷主要包含了四组数中等内容,欢迎下载使用。

    2022届北京市燕山区达标名校中考适应性考试数学试题含解析:

    这是一份2022届北京市燕山区达标名校中考适应性考试数学试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中是必然事件的是,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map