2022年北京市海淀区首师大附重点达标名校毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.一、单选题
点P(2,﹣1)关于原点对称的点P′的坐标是( )
A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)
2.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
A.向左平移1个单位 B.向右平移3个单位
C.向上平移3个单位 D.向下平移1个单位
3.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )
A.4cm B.8cm C.(a+4)cm D.(a+8)cm
4.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )
A. B. C. D.
5.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
A. B.1 C. D.
6.如图,若AB∥CD,则α、β、γ之间的关系为( )
A.α+β+γ=360° B.α﹣β+γ=180°
C.α+β﹣γ=180° D.α+β+γ=180°
7.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )
A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣1
8.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是( )
A.a=2,b=3 B.a=-2,b=-3
C.a=-2,b=3 D.a=2,b=-3
9.若正六边形的边长为6,则其外接圆半径为( )
A.3 B.3 C.3 D.6
10.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )
A.6 B.8
C.10 D.12
11.下列方程中,两根之和为2的是( )
A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=0
12.如图是一个空心圆柱体,其俯视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算(+1)(-1)的结果为_____.
14.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.
15.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.
16.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.
17.不等式组的解集为,则的取值范围为_____.
18.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=_____
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.
小明和小刚都在本周日上午去游玩的概率为________;
求他们三人在同一个半天去游玩的概率.
20.(6分)计算:(﹣1)4﹣2tan60°+ .
21.(6分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.
(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
22.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
23.(8分)化简:.
24.(10分)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.
25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=4,求MC的长.
26.(12分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=
(1)求a,k的值及点B的坐标;
(2)观察图象,请直接写出不等式ax﹣1≥的解集;
(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
27.(12分)如图,在顶点为P的抛物线y=a(x-h)2+k(a≠0)的对称轴1的直线上取点A(h,k+),过A作BC⊥l交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线m⊥l.又分别过点B,C作直线BE⊥m和CD⊥m,垂足为E,D.在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形.
(1)直接写出抛物线y=x2的焦点坐标以及直径的长.
(2)求抛物线y=x2-x+的焦点坐标以及直径的长.
(3)已知抛物线y=a(x-h)2+k(a≠0)的直径为,求a的值.
(4)①已知抛物线y=a(x-h)2+k(a≠0)的焦点矩形的面积为2,求a的值.
②直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.
【详解】
解:点P(2,-1)关于原点对称的点的坐标是(-2,1).
故选A.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
2、D
【解析】
A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
D.平移后,得y=x2−1图象不经过A点,故D符合题意;
故选D.
3、B
【解析】
【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
【详解】∵原正方形的周长为acm,
∴原正方形的边长为cm,
∵将它按图的方式向外等距扩1cm,
∴新正方形的边长为(+2)cm,
则新正方形的周长为4(+2)=a+8(cm),
因此需要增加的长度为a+8﹣a=8cm,
故选B.
【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
4、C
【解析】
试题分析:由题意可得,
第一小组对应的圆心角度数是:×360°=72°,
故选C.
考点:1.扇形统计图;2.条形统计图.
5、D
【解析】
由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
【详解】
如图,连接AC交BE于点O,
∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
∴AB=BE,
∵四边形AEHB为菱形,
∴AE=AB,
∴AB=AE=BE,
∴△ABE是等边三角形,
∵AB=3,AD=,
∴tan∠CAB=,
∴∠BAC=30°,
∴AC⊥BE,
∴C在对角线AH上,
∴A,C,H共线,
∴AO=OH=AB=,
∵OC=BC=,
∵∠COB=∠OBG=∠G=90°,
∴四边形OBGM是矩形,
∴OM=BG=BC=,
∴HM=OH﹣OM=,
故选D.
【点睛】
本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
6、C
【解析】
过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
【详解】
解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
故选:C.
【点睛】
本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
7、B
【解析】
0.056用科学记数法表示为:0.056=,故选B.
8、B
【解析】
分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.
详解:(x+1)(x-3)
=x2-3x+x-3
=x2-2x-3
所以a=2,b=-3,
故选B.
点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.
9、D
【解析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
【详解】
如图为正六边形的外接圆,ABCDEF是正六边形,
∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
故选D.
【点睛】
本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
10、D
【解析】
根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.
【详解】
解:∵四边形ABCD为正方形,
∴AB=CD,AB∥CD,
∴∠ABF=∠GDF,∠BAF=∠DGF,
∴△ABF∽△GDF,
∴=2,
∴AF=2GF=4,
∴AG=2.
∵AD∥BC,DG=CG,
∴=1,
∴AG=GE
∴AE=2AG=1.
故选:D.
【点睛】
本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.
11、B
【解析】
由根与系数的关系逐项判断各项方程的两根之和即可.
【详解】
在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;
在方程x2-2x-3=0中,两根之和等于2,故B符合题意;
在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;
在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,
故选B.
【点睛】
本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.
12、D
【解析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
该空心圆柱体的俯视图是圆环,如图所示:
故选D.
【点睛】
本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
利用平方差公式进行计算即可.
【详解】
原式=()2﹣1
=2﹣1
=1,
故答案为:1.
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.
14、
【解析】
先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.
【详解】
∵⊙O的直径BC=,
∴AB=BC=1,
设圆锥的底面圆的半径为r,
则2πr=,解得r=,
即圆锥的底面圆的半径为米故答案为.
15、
【解析】
试题解析:∵一个布袋里装有2个红球和5个白球,
∴摸出一个球摸到红球的概率为:.
考点:概率公式.
16、1.1
【解析】
【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.
【详解】∵一组数据4,x,1,y,7,9的众数为1,
∴x,y中至少有一个是1,
∵一组数据4,x,1,y,7,9的平均数为6,
∴(4+x+1+y+7+9)=6,
∴x+y=11,
∴x,y中一个是1,另一个是6,
∴这组数为4,1,1,6,7,9,
∴这组数据的中位数是×(1+6)=1.1,
故答案为:1.1.
【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.
17、k≥1
【解析】
解不等式2x+9>6x+1可得x<2,解不等式x-k<1,可得x<k+1,由于x<2,可知k+1≥2,解得k≥1.
故答案为k≥1.
18、.
【解析】
解:令AE=4x,BE=3x,
∴AB=7x.
∵四边形ABCD为平行四边形,
∴CD=AB=7x,CD∥AB,
∴△BEF∽△DCF.
∴,
∴DF=
【点睛】
本题考查平行四边形的性质及相似三角形的判定与性质,掌握定理正确推理论证是本题的解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)
【解析】
(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;
(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.
【详解】
解:(1)根据题意,画树状图如图:
由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;
(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,
∴他们三人在同一个半天去游玩的概率为=.
答:他们三人在同一个半天去游玩的概率是.
【点睛】
本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
20、1
【解析】
首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案.
解:原式==1.
“点睛”此题主要考查了实数运算,正确化简各数是解题关键.
,
21、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
【解析】
(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
【详解】
(Ⅰ)设OD为x,
∵点A(3,0),点B(0,),
∴AO=3,BO=
∴AB=6
∵折叠
∴BD=DA
在Rt△ADO中,OA1+OD1=DA1.
∴9+OD1=(﹣OD)1.
∴OD=
∴D(0,)
(Ⅱ)∵折叠
∴∠BDC=∠CDO=90°
∴CD∥OA
∴且BD=AC,
∴
∴BD=﹣18
∴OD=﹣(﹣18)=18﹣
∵tan∠ABO=,
∴∠ABC=30°,即∠BAO=60°
∵tan∠ABO=,
∴CD=11﹣6
∴D(11﹣6,11﹣18)
(Ⅲ)如图:过点C作CE⊥AO于E
∵CE⊥AO
∴OE=1,且AO=3
∴AE=1,
∵CE⊥AO,∠CAE=60°
∴∠ACE=30°且CE⊥AO
∴AC=1,CE=
∵BC=AB﹣AC
∴BC=6﹣1=4
若点B'落在A点右边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=1+
∴B'(1+,0)
若点B'落在A点左边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=﹣1
∴B'(1﹣,0)
综上所述:B'(1+,0),(1﹣,0)
【点睛】
本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
22、(1)证明见解析.(2)证明见解析.
【解析】
分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
详解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB•AD,
∵AB=2AO,
∴AC2=2AD•AO.
点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
23、
【解析】
原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.
【详解】
解:原式.
24、 (x﹣y)2;2.
【解析】
首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.
【详解】
原式= x2﹣4y2+4xy(5y2-2xy)÷4xy
=x2﹣4y2+5y2﹣2xy
=x2﹣2xy+y2,
=(x﹣y)2,
当x=2028,y=2时,
原式=(2028﹣2)2=(﹣2)2=2.
【点睛】
本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.
25、(1)证明见解析;(2)MC=.
【解析】
【分析】(1)连接OC,利用切线的性质证明即可;
(2)根据相似三角形的判定和性质以及勾股定理解答即可.
【详解】(1)连接OC,
∵CN为⊙O的切线,
∴OC⊥CM,∠OCA+∠ACM=90°,
∵OM⊥AB,
∴∠OAC+∠ODA=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠ACM=∠ODA=∠CDM,
∴MD=MC;
(2)由题意可知AB=5×2=10,AC=4,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴BC==2,
∵∠AOD=∠ACB,∠A=∠A,
∴△AOD∽△ACB,
∴,即,
可得:OD=2.5,
设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,
解得:x=,
即MC=.
【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.
26、(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
【解析】
1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;
(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;
(3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.
【详解】
解:(1)
过A作AE⊥x轴,交x轴于点E,
在Rt△AOE中,OA=,tan∠AOC=,
设AE=x,则OE=3x,
根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
解得:x=1或x=﹣1(舍去),
∴OE=3,AE=1,即A(3,1),
将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,
将A坐标代入反比例解析式得:1=,即k=3,
联立一次函数与反比例解析式得:,
消去y得: x﹣1=,
解得:x=﹣或x=3,
将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
(2)由A(3,1),B(﹣,﹣2),
根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;
(3)显然P与O重合时,△PDC∽△ODC;
当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,
∵∠PCD=∠COD=90°,∠PCD=∠CDO,
∴△PDC∽△CDO,
∵∠PCO+∠CPO=90°,
∴∠DCO=∠CPO,
∵∠POC=∠COD=90°,
∴△PCO∽△CDO,
∴=,
对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
∴C(,0),D(0,﹣1),即OC=,OD=1,
∴=,即OP=,
此时P坐标为(0,),
综上,满足题意P的坐标为(0,)或(0,0).
【点睛】
此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.
27、(1)4(1)4(3)(4)①a=±;②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
【解析】
(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;
(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;
(3)根据题意和y=a(x-h)1+k(a≠0)的直径为,可以求得a的值;
(4)①根据题意和抛物线y=ax1+bx+c(a≠0)的焦点矩形的面积为1,可以求得a的值;
②根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.
【详解】
(1)∵抛物线y=x1,
∴此抛物线焦点的横坐标是0,纵坐标是:0+=1,
∴抛物线y=x1的焦点坐标为(0,1),
将y=1代入y=x1,得x1=-1,x1=1,
∴此抛物线的直径是:1-(-1)=4;
(1)∵y=x1-x+=(x-3)1+1,
∴此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,
∴焦点坐标为(3,3),
将y=3代入y=(x-3)1+1,得
3=(x-3)1+1,解得,x1=5,x1=1,
∴此抛物线的直径时5-1=4;
(3)∵焦点A(h,k+),
∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,
∴直径为:h+-(h-)==,
解得,a=±,
即a的值是;
(4)①由(3)得,BC=,
又CD=A'A=.
所以,S=BC•CD=•==1.
解得,a=±;
②当m=1-或m=5+时,1个公共点,当1-<m≤1或5≤m<5+时,1个公共点,
理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:
B(1,3),C(5,3),E(1,1),D(5,1),
当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,
∴当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
由图可知,公共点个数随m的变化关系为
当m<1-时,无公共点;
当m=1-时,1个公共点;
当1-<m≤1时,1个公共点;
当1<m<5时,3个公共点;
当5≤m<5+时,1个公共点;
当m=5+时,1个公共点;
当m>5+时,无公共点;
由上可得,当m=1-或m=5+时,1个公共点;
当1-<m≤1或5≤m<5+时,1个公共点.
【点睛】
考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.
云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。
宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
北京市海淀区首师大附重点达标名校2021-2022学年中考数学全真模拟试题含解析: 这是一份北京市海淀区首师大附重点达标名校2021-2022学年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是, “a是实数,”这一事件是,若分式的值为0,则x的值为等内容,欢迎下载使用。