搜索
    上传资料 赚现金
    英语朗读宝

    2022年北京育才校中考二模数学试题含解析

    2022年北京育才校中考二模数学试题含解析第1页
    2022年北京育才校中考二模数学试题含解析第2页
    2022年北京育才校中考二模数学试题含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年北京育才校中考二模数学试题含解析

    展开

    这是一份2022年北京育才校中考二模数学试题含解析,共17页。试卷主要包含了下列命题中,真命题是,的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )
    A.3.1; B.4; C.2; D.6.1.
    2.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为( )

    A.4 B.5 C.8 D.10
    3.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是(  )
    A.﹣2 B.2 C.3 D.﹣3
    4.下列命题中,真命题是( )
    A.对角线互相垂直且相等的四边形是正方形
    B.等腰梯形既是轴对称图形又是中心对称图形
    C.圆的切线垂直于经过切点的半径
    D.垂直于同一直线的两条直线互相垂直
    5.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(  )
    A.①② B.②④ C.②③ D.③④
    6.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    7.习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为(  )
    A.135×107 B.1.35×109 C.13.5×108 D.1.35×1014
    8.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )

    A. B. C. D.12
    9.的值是  
    A.±3 B.3 C.9 D.81
    10.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )

    A.0.2 B.0.25 C.0.4 D.0.5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
    12.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.

    13.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.
    14.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要____________根火柴.

    15.已知a,b为两个连续的整数,且a<<b,则ba=_____.
    16.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)

    三、解答题(共8题,共72分)
    17.(8分)如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;
    若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.

    18.(8分)解分式方程:
    - =
    19.(8分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
    (1)求此抛物线的表达式;
    (2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
    20.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,
    (1)求证:BC=2AD;
    (2)若cosB=,AB=10,求CD的长.

    21.(8分)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.
    求证:
    (1)CD⊥DF;
    (2)BC=2CD.

    22.(10分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.

    23.(12分)已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.
    (1)求m的取值范围;
    (2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.
    24.为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
    本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】∵数据组2、x、8、1、1、2的众数是2,
    ∴x=2,
    ∴这组数据按从小到大排列为:2、2、2、1、1、8,
    ∴这组数据的中位数是:(2+1)÷2=3.1.
    故选A.
    2、D
    【解析】
    利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.
    【详解】
    解:∵矩形ABCD的对角线AC,BD相交于点O,
    ∴∠BAD=90°,点O是线段BD的中点,
    ∵点M是AB的中点,
    ∴OM是△ABD的中位线,
    ∴AD=2OM=1.
    ∴在直角△ABD中,由勾股定理知:BD=.
    故选:D.
    【点睛】
    本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.
    3、B
    【解析】
    把代入方程组得:,
    解得:,
    所以a−2b=−2×()=2.
    故选B.
    4、C
    【解析】
    分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
    解答:解:A、错误,例如对角线互相垂直的等腰梯形;
    B、错误,等腰梯形是轴对称图形不是中心对称图形;
    C、正确,符合切线的性质;
    D、错误,垂直于同一直线的两条直线平行.
    故选C.
    5、D
    【解析】
    试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
    解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;
    根据客车数列方程,应该为,②错误,③正确;
    所以正确的是③④.
    故选D.
    考点:由实际问题抽象出一元一次方程.
    6、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    7、B
    【解析】
    科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将1350000000用科学记数法表示为:1350000000=1.35×109,
    故选B.
    【点睛】
    本题考查科学记数法的表示方法. 科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值及n的值.
    8、C
    【解析】
    设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
    【详解】
    ∵四边形OCBA是矩形,
    ∴AB=OC,OA=BC,
    设B点的坐标为(a,b),
    ∵BD=3AD,
    ∴D(,b),
    ∵点D,E在反比例函数的图象上,
    ∴=k,
    ∴E(a, ),
    ∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
    ∴k=,
    故选:C
    【点睛】
    考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
    9、C
    【解析】
    试题解析:∵
    ∴的值是3
    故选C.
    10、B
    【解析】
    设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
    【详解】
    解:设大正方形边长为2,则小正方形边长为1,
    因为面积比是相似比的平方,
    所以大正方形面积为4,小正方形面积为1,
    则针孔扎到小正方形(阴影部分)的概率是;
    故选:B.
    【点睛】
    本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、①③④
    【解析】
    分析:根据两个向量垂直的判定方法一一判断即可;
    详解:①∵2×(−1)+1×2=0,
    ∴与垂直;
    ②∵
    ∴与不垂直.
    ③∵
    ∴与垂直.
    ④∵
    ∴与垂直.
    故答案为:①③④.
    点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
    12、
    【解析】
    先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.
    【详解】
    解:∵四边形是平行四边形,
    ∴对角线把平行四边形分成面积相等的四部分,
    观察发现:图中阴影部分面积=S四边形,
    ∴针头扎在阴影区域内的概率为;
    故答案为:.
    【点睛】
    此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.
    13、
    【解析】
    分析:
    由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.
    详解:
    ∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,
    ∴抽到有理数的概率是:.
    故答案为.
    点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.
    14、
    【解析】
    根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.
    【详解】
    第一个图中有8根火柴棒组成,
    第二个图中有8+6个火柴棒组成,
    第三个图中有8+2×6个火柴组成,
    ……
    ∴组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.
    故答案为6n+2
    【点睛】
    本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.
    15、1
    【解析】
    根据已知a<<b,结合a、b是两个连续的整数可得a、b的值,即可求解.
    【详解】
    解:∵a,b为两个连续的整数,且a<<b,
    ∴a=2,b=3,
    ∴ba=32=1.
    故答案为1.
    【点睛】
    此题考查的是如何根据无理数的范围确定两个有理数的值,题中根据的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,
    16、
    【解析】
    试题解析:如图,连接D1E1,设AD1、BE1交于点M,

    ∵AE1:AC=1:(n+1),
    ∴S△ABE1:S△ABC=1:(n+1),
    ∴S△ABE1=,
    ∵,
    ∴,
    ∴S△ABM:S△ABE1=(n+1):(2n+1),
    ∴S△ABM:=(n+1):(2n+1),
    ∴Sn=.
    故答案为.

    三、解答题(共8题,共72分)
    17、详见解析.
    【解析】
    (1)根据全等三角形判定中的“SSS”可得出△ADC≌△CBA,由全等的性质得∠DAC=∠BCA,可证AD∥BC,根据平行线的性质得出∠1=∠1;
    (1)(3)和(1)的证法完全一样.先证△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,从而∠1=∠1.
    【详解】
    证明:∠1与∠1相等.
    在△ADC与△CBA中,

    ∴△ADC≌△CBA.(SSS)
    ∴∠DAC=∠BCA.
    ∴DA∥BC.
    ∴∠1=∠1.
    ②③图形同理可证,△ADC≌△CBA得到∠DAC=∠BCA,则DA∥BC,∠1=∠1.
    18、方程无解
    【解析】
    找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.
    【详解】
    解:方程的两边同乘(x+1)(x−1),
    得:,


    ∴此方程无解
    【点睛】
    本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.
    19、(1)y=-(x-3)2+5(2)5
    【解析】
    (1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
    (2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
    【详解】
    (1)设此抛物线的表达式为y=a(x-3)2+5,
    将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
    ∴此抛物线的表达式为
    (2)∵A(1,3),抛物线的对称轴为直线x=3,
    ∴B(5,3).
    令x=0,则
    ∴△ABC的面积
    【点睛】
    考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
    20、(1)证明见解析;(2)CD=2.
    【解析】
    (1)根据三角函数的概念可知tanA=,cos∠BCD=,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.
    【详解】
    (1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,
    ∴=2·,
    ∴BC=2AD.
    (2)∵cosB==,BC=2AD,
    ∴=.
    ∵AB=10,∴AD=×10=4,BD=10-4=6,
    ∴BC=8,∴CD==2.
    【点睛】
    本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.
    21、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用在同圆中所对的弧相等,弦相等,所对的圆周角相等,三角形内角和可证得∠CDF=90°,则CD⊥DF;
    (2)应先找到BC的一半,证明BC的一半和CD相等即可.
    【详解】
    证明:(1)∵AB=AD,
    ∴弧AB=弧AD,∠ADB=∠ABD.
    ∵∠ACB=∠ADB,∠ACD=∠ABD,
    ∴∠ACB=∠ADB=∠ABD=∠ACD.
    ∴∠ADB=(180°﹣∠BAD)÷2=90°﹣∠DFC.
    ∴∠ADB+∠DFC=90°,即∠ACD+∠DFC=90°,
    ∴CD⊥DF.
    (2)过F作FG⊥BC于点G,
    ∵∠ACB=∠ADB,
    又∵∠BFC=∠BAD,
    ∴∠FBC=∠ABD=∠ADB=∠ACB.
    ∴FB=FC.
    ∴FG平分BC,G为BC中点,
    ∵在△FGC和△DFC中,

    ∴△FGC≌△DFC(ASA),

    ∴BC=2CD.

    【点睛】
    本题用到的知识点为:同圆中,相等的弧所对的弦相等,所对的圆周角相等,注意把所求角的度数进行合理分割;证两条线段相等,应证这两条线段所在的三角形全等.
    22、(1)矩形的周长为4m;(2)矩形的面积为1.
    【解析】
    (1)根据题意和矩形的周长公式列出代数式解答即可.
    (2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.
    【详解】
    (1)矩形的长为:m﹣n,
    矩形的宽为:m+n,
    矩形的周长为:2[(m-n)+(m+n)]=4m;
    (2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,
    当m=7,n=4时,S=72-42=1.
    【点睛】
    本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.
    23、(1)且,;(2)当m=1时,方程的整数根为0和3.
    【解析】
    (1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出的取值;
    (2)根据根与系数的关系得到x1+x2=3,,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.
    【详解】
    解:(1)∵关于x的分式方程的根为非负数,
    ∴且.
    又∵,且,
    ∴解得且.
    又∵方程为一元二次方程,
    ∴.
    综上可得:且,.
    (2)∵一元二次方程有两个整数根x1、x2,m为整数,
    ∴x1+x2=3,,
    ∴为整数,∴m=1或.
    又∵且,,
    ∴m1.
    当m=1时,原方程可化为.
    解得:,.
    ∴当m=1时,方程的整数根为0和3.
    【点睛】
    考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.
    24、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
    【解析】
    (1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
    (2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
    (3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
    【详解】
    (1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
    m=100﹣(24+48+8+8)=12,
    故答案为250、12;
    (2)平均数为=1.38(h),
    众数为1.5h,中位数为=1.5h;
    (3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
    【点睛】
    本题主要考查数据的收集、 处理以及统计图表.

    相关试卷

    2023年北京市西城区育才学校中考数学零模试卷(含解析):

    这是一份2023年北京市西城区育才学校中考数学零模试卷(含解析),共28页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    北京市育才校2021-2022学年中考三模数学试题含解析:

    这是一份北京市育才校2021-2022学年中考三模数学试题含解析,共21页。试卷主要包含了下列各数中是有理数的是,下列图标中,是中心对称图形的是,如图,已知直线l1,已知抛物线y=x2+等内容,欢迎下载使用。

    2022年重庆育才成功校中考联考数学试题含解析:

    这是一份2022年重庆育才成功校中考联考数学试题含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map