![2022年贵州省黔南中考二模数学试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13338334/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年贵州省黔南中考二模数学试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13338334/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年贵州省黔南中考二模数学试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13338334/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年贵州省黔南中考二模数学试题含解析
展开这是一份2022年贵州省黔南中考二模数学试题含解析,共20页。试卷主要包含了下列算式的运算结果正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在0,π,﹣3,0.6,这5个实数中,无理数的个数为( )
A.1个 B.2个 C.3个 D.4个
2.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是( )
A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
3.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
4.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为( )
A. B. C. D.
5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
A.60元 B.70元 C.80元 D.90元
6.下列算式的运算结果正确的是( )
A.m3•m2=m6 B.m5÷m3=m2(m≠0)
C.(m﹣2)3=m﹣5 D.m4﹣m2=m2
7.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= ( )
A.70° B.110° C.130° D.140°
8.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
9.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A.3cm B.4cm C.5cm D.6cm
10.一元二次方程2x2﹣3x+1=0的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数(k≠0,x>0)的图象过点B,E.若AB=2,则k的值为________.
12.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
13.如图,∠1,∠2是四边形ABCD的两个外角,且∠1+∠2=210°,则∠A+∠D=____度.
14.如图,在等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A旋转后得到△ACE,连接DE交AC于点F,则△AEF的面积为_______.
15.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
16.抛物线y=mx2+2mx+5的对称轴是直线_____.
17.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
S矩形EBMF=S△ABC-(______________+______________).
易知,S△ADC=S△ABC,______________=______________,______________=______________.
可得S矩形NFGD=S矩形EBMF.
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:,其中,.
19.(5分)解不等式:﹣≤1
20.(8分)自学下面材料后,解答问题。
分母中含有未知数的不等式叫分式不等式。如: <0等。那么如何求出它们的解集呢?
根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负。其字母表达式为:
若a>0,b>0,则>0;若a<0,b<0,则>0;
若a>0,b<0,则<0;若a<0,b>0,则<0.
反之:若>0,则 或 ,
(1)若<0,则___或___.
(2)根据上述规律,求不等式 >0的解集.
21.(10分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB的面积;观察图象,直接写出y1>y1时x的取值范围.
22.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)
23.(12分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
本次接受调查的跳水运动员人数为 ,图①中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
24.(14分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
证明:∽;
若,求的值;
如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
分别根据无理数、有理数的定义逐一判断即可得.
【详解】
解:在0,π,-3,0.6,这5个实数中,无理数有π、这2个,
故选B.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
2、C
【解析】
分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
【详解】
解:①a>1时,二次函数图象开口向上,
∵|x1﹣2|>|x2﹣2|,
∴y1>y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
②a<1时,二次函数图象开口向下,
∵|x1﹣2|>|x2﹣2|,
∴y1<y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
综上所述,表达式正确的是a(y1﹣y2)>1.
故选:C.
【点睛】
本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
3、B
【解析】
△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【详解】
解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是B;
故选B.
【点睛】
本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
4、A
【解析】
分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.
详解:连接OE1,OD1,OD2,如图,
∵六边形A1B1C1D1E1F1为正六边形,
∴∠E1OD1=60°,
∴△E1OD1为等边三角形,
∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,
∴OD2⊥E1D1,
∴OD2=E1D1=×2,
∴正六边形A2B2C2D2E2F2的边长=×2,
同理可得正六边形A3B3C3D3E3F3的边长=()2×2,
则正六边形A11B11C11D11E11F11的边长=()10×2=.
故选A.
点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.
5、C
【解析】
设销售该商品每月所获总利润为w,
则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,
∴当x=80时,w取得最大值,最大值为3600,
即售价为80元/件时,销售该商品所获利润最大,故选C.
6、B
【解析】
直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.
【详解】
A、m3•m2=m5,故此选项错误;
B、m5÷m3=m2(m≠0),故此选项正确;
C、(m-2)3=m-6,故此选项错误;
D、m4-m2,无法计算,故此选项错误;
故选:B.
【点睛】
此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.
7、D
【解析】
∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'
=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.
8、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
9、A
【解析】
分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
详解:设CN=xcm,则DN=(8﹣x)cm,
由折叠的性质知EN=DN=(8﹣x)cm,
而EC=BC=4cm,
在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8﹣x)2=16+x2,
整理得16x=48,
所以x=1.
故选:A.
点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.
10、B
【解析】
试题分析:对于一元二次方程,当△=时方程有两个不相等的实数根,当△=时方程有两个相等的实数根,当△=时方程没有实数根.根据题意可得:△=,则方程有两个不相等的实数根.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
解:设E(x,x),
∴B(2,x+2),
∵反比例函数 (k≠0,x>0)的图象过点B. E.
∴x2=2(x+2),
,(舍去),
,
故答案为
12、
【解析】
根据随机事件概率大小的求法,找准两点:
①符合条件的情况数目;
②全部情况的总数.
二者的比值就是其发生的概率的大小.
【详解】
解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
∴从中任意摸出一个球,则摸出白球的概率是.
故答案为:.
【点睛】
本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
13、210.
【解析】
利用邻补角的定义求出∠ABC+∠BCD,再利用四边形内角和定理求得∠A+∠D.
【详解】
∵∠1+∠2=210°,
∴∠ABC+∠BCD=180°×2﹣210°=150°,
∴∠A+∠D=360°﹣150°=210°.
故答案为:210.
【点睛】
本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出∠ABC+∠BCD是关键.
14、
【解析】
首先,利用等边三角形的性质求得AD=2;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到△AEF的面积.
【详解】
解:∵在等边△ABC中,∠B=60º,AB=4,D是BC的中点,
∴AD⊥BC,∠BAD=∠CAD=30º,
∴AD=ABcos30º=4×=2,
根据旋转的性质知,∠EAC=∠DAB=30º,AD=AE,
∴∠DAE=∠EAC+∠CAD=60º,
∴△ADE的等边三角形,
∴DE=AD=2,∠AEF=60º,
∵∠EAC=∠CAD
∴EF=DF=,AF⊥DE
∴AF=EFtan60º=×=3,
∴S△AEF=EF×AF=××3=.
故答案为:.
【点睛】
本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出△ADE是等边三角形是解题的关键.
15、1
【解析】
分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.
详解:设方程的另一个根为m,
根据题意得:1+m=3,
解得:m=1.
故答案为1.
点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.
16、x=﹣1
【解析】
根据抛物线的对称轴公式可直接得出.
【详解】
解:这里a=m,b=2m
∴对称轴x=
故答案为:x=-1.
【点睛】
解答本题关键是识记抛物线的对称轴公式x=.
17、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC
【解析】
根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.
【详解】
S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-( S△ANF+S△FCM).
易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,
可得S矩形NFGD=S矩形EBMF.
故答案分别为 S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.
【点睛】
本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.
三、解答题(共7小题,满分69分)
18、9
【解析】
根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
当,时,
原式
【点睛】
本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.
19、x≥.
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.
【详解】
2(2﹣3x)﹣3(x﹣1)≤6,
4﹣6x﹣3x+3≤6,
﹣6x﹣3x≤6﹣4﹣3,
﹣9x≤﹣1,
x≥.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
20、(1) 或;(2)x>2或x<−1.
【解析】
(1)根据两数相除,异号得负解答;
(2)先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.
【详解】
(1)若>0,则 或 ;
故答案为: 或;
(2)由上述规律可知,不等式转化为或,
所以,x>2或x<−1.
【点睛】
此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.
21、(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4
【解析】
试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;
(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;
(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.
试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)
∵一次函数y1=kx+b(k≠0)的图象与反比例函数y1=﹣的图象交于A、B两点
∴将A(﹣1,m)B(n,﹣1)代入反比例函数y1=﹣可得,m=4,n=4
∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得
,解得
∴一次函数的解析式为y1=﹣x+1;,
(1)在一次函数y1=﹣x+1中,
当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)
∴=×1×1+×1×1+×1×1=1+1+1=6;
(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4
考点:1、一次函数,1、反比例函数,3、三角形的面积
22、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为 ; ;,偶数.
【解析】
(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,
(2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本问的抛物线解析式不止一个,求出其中一个.
【详解】
解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
当点A在x轴正半轴、点B在y轴负半轴上时,
∴AO=1,BO=1,
∴正方形ABCD的边长为 ,
当点A在x轴负半轴、点B在y轴正半轴上时,
设正方形的边长为a,得3a=,
∴ ,
所以伴侣正方形的边长为或;
(2)作DE、CF分别垂直于x、y轴,
知△ADE≌△BAO≌△CBF,
此时,m<2,DE=OA=BF=m
OB=CF=AE=2﹣m
∴OF=BF+OB=2
∴C点坐标为(2﹣m,2),
∴2m=2(2﹣m)
解得m=1,
反比例函数的解析式为y= ,
(3)根据题意画出图形,如图所示:
过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
∴△CED≌△DGB≌△AOB≌△AFC,
∵C(3,4),即CF=4,OF=3,
∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
则D坐标为(﹣1,3);
设过D与C的抛物线的解析式为:y=ax2+b,
把D和C的坐标代入得: ,
解得 ,
∴满足题意的抛物线的解析式为y=x2+ ;
同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;
对应的抛物线分别为 ; ;,
所求的任何抛物线的伴侣正方形个数为偶数.
【点睛】
本题考查了二次函数的综合题.灵活运用相关知识是解题关键.
23、(1)40人;1;(2)平均数是15;众数16;中位数15.
【解析】
(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
【详解】
解:(1)4÷10%=40(人),
m=100-27.5-25-7.5-10=1;
故答案为40,1.
(2)观察条形统计图,
∵,
∴这组数据的平均数为15;
∵在这组数据中,16出现了12次,出现的次数最多,
∴这组数据的众数为16;
∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
∴这组数据的中位数为15.
【点睛】
本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
24、(1)证明见解析;(2);(3).
【解析】
由余角的性质可得,即可证∽;
由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
【详解】
证明:,
又,
又,
∽
∽,
又,,
如图,延长AD与BG的延长线交于H点
,
∽
∴
,由可知≌
,
,
代入上式可得,
∽,
,,
∴
,,
平分
又平分,
,
是等腰直角三角形.
∴.
【点睛】
本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
相关试卷
这是一份2024年贵州省黔南州中考一模考试数学试题,共6页。
这是一份2023年贵州省黔南州惠水县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年贵州省黔南州瓮安县达标名校中考数学四模试卷含解析,共24页。试卷主要包含了的相反数是等内容,欢迎下载使用。