搜索
    上传资料 赚现金
    英语朗读宝

    2022年河北省衡水市达标名校中考四模数学试题含解析

    2022年河北省衡水市达标名校中考四模数学试题含解析第1页
    2022年河北省衡水市达标名校中考四模数学试题含解析第2页
    2022年河北省衡水市达标名校中考四模数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年河北省衡水市达标名校中考四模数学试题含解析

    展开

    这是一份2022年河北省衡水市达标名校中考四模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为(  )

    A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
    2.下列各式中计算正确的是(  )
    A.x3•x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t
    3.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在(  )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()
    A.4 B.8 C.2 D.-2
    5.一个多边形的每个内角均为120°,则这个多边形是( )
    A.四边形 B.五边形 C.六边形 D.七边形
    6.若(x﹣1)0=1成立,则x的取值范围是(  )
    A.x=﹣1 B.x=1 C.x≠0 D.x≠1
    7.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是(  )

    A.25° B.30° C.35° D.55°
    8.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为( )

    A.5 B.6 C.8 D.12
    9.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形,转动这个四边形,使它形状改变,当,时,等于( )

    A. B. C. D.
    10.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为(  )
    A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为_____.

    12.若不等式组的解集为,则________.
    13.如图,在△ABC中,AB=AC=2,BC=1.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为_______.

    14.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
    15.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_____秒.
    16.若x,y为实数,y=,则4y﹣3x的平方根是____.
    三、解答题(共8题,共72分)
    17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,

    (1)求证:AF=DC;
    (2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
    18.(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5
    (1)求BC的长;
    (2)如果两条对角线长的和是20,求三角形△AOD的周长.

    19.(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.

    请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?
    20.(8分)如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点.

    (1)求出A,B两点的坐标;
    (2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
    (3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
    21.(8分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元
    (1)笔记本和钢笔的单价各多少元?
    (2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;
    (3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.
    22.(10分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.
    23.(12分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.

    (1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
    (2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
    24.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
    该班共有   名留守学生,B类型留守学生所在扇形的圆心角的度数为   ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    令x=0,y=6,∴B(0,6),
    ∵等腰△OBC,∴点C在线段OB的垂直平分线上,
    ∴设C(a,3),则C '(a-5,3),
    ∴3=3(a-5)+6,解得a=4,
    ∴C(4,3).
    故选B.
    点睛:掌握等腰三角形的性质、函数图像的平移.
    2、D
    【解析】
    试题解析:A、 原式计算错误,故本选项错误;
    B、 原式计算错误,故本选项错误;
    C、 原式计算错误,故本选项错误;
    D、 原式计算正确,故本选项正确;
    故选D.
    点睛:同底数幂相除,底数不变,指数相减.
    3、D
    【解析】
    求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.
    【详解】
    抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,
    纵坐标为:y==﹣2a﹣,
    ∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,
    ∴抛物线的顶点经过一二三象限,不经过第四象限,
    故选:D.
    【点睛】
    本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.
    4、C
    【解析】
    解:由题意得:,∴,∴x=±1.故选C.
    5、C
    【解析】
    由题意得,180°(n-2)=120°,
    解得n=6.故选C.
    6、D
    【解析】
    试题解析:由题意可知:x-1≠0,
    x≠1
    故选D.
    7、C
    【解析】
    根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.
    【详解】
    解:∵直线m∥n,
    ∴∠3=∠1=25°,
    又∵三角板中,∠ABC=60°,
    ∴∠2=60°﹣25°=35°,
    故选C.

    【点睛】
    本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.
    8、B
    【解析】
    试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.
    故选B.

    考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质
    9、B
    【解析】
    首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,,易得△ABC是等边三角形,即可得到答案.
    【详解】
    连接AC,
    ∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,
    ∴AB=BC,
    ∵,
    ∴△ABC是等边三角形,
    ∴AC=AB=1.
    故选:B.

    【点睛】
    本题考点:菱形的性质.
    10、A
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    抛物线y=x2的顶点坐标为(0,0),
    先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),
    所以,平移后的抛物线的解析式为y=(x+2)2﹣1.
    故选:A.
    【点睛】
    本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2a﹣b.
    【解析】
    直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.
    【详解】
    解:由数轴可得:
    b﹣a<0,a>0,
    则|b﹣a|+
    =a﹣b+a
    =2a﹣b.
    故答案为2a﹣b.
    【点睛】
    此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.
    12、-1
    【解析】
    分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.
    详解:由不等式得x>a+2,x<b,
    ∵-1<x<1,
    ∴a+2=-1,b=1
    ∴a=-3,b=2,
    ∴(a+b)2009=(-1)2009=-1.
    故答案为-1.
    点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
    13、1+
    【解析】
    当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依据Rt△CFG≌Rt△CFH,可得CH=CG=,再根据勾股定理即可得到EF的长.
    【详解】
    解:如图,

    当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,
    当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,
    ∴AE⊥BC,
    ∴CE=BC=2,
    又∵AC=2,
    ∴AE=1,EG==,
    ∴CG==,
    作FH⊥CD于H,
    ∵CF平分∠ACD,
    ∴FG=FH,而CF=CF,
    ∴Rt△CFG≌Rt△CFH,
    ∴CH=CG=,
    设EF=x,则HF=GF=x-,
    ∵Rt△EFH中,EH2+FH2=EF2,
    ∴(2+)2+(x-)2=x2,
    解得x=1+,
    故答案为1+.
    【点睛】
    本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
    14、3
    【解析】
    由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.
    【详解】
    ∵一元二次方程ax2+bx+c=0有实数根,
    ∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,
    ∴-c≥-3,即c≤3,
    ∴c的最大值为3.
    故答案为:3.
    【点睛】
    本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.
    15、7秒或25秒.
    【解析】
    考点:勾股定理;等腰三角形的性质.
    专题:动点型;分类讨论.
    分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:①PA⊥AC②PA⊥AB,从而可得到运动的时间.
    解答:解:如图,作AD⊥BC,交BC于点D,
    ∵BC=8cm,
    ∴BD=CD=BC=4cm,
    ∴AD==3,
    分两种情况:当点P运动t秒后有PA⊥AC时,
    ∵AP2=PD2+AD2=PC2-AC2,∴PD2+AD2=PC2-AC2,
    ∴PD2+32=(PD+4)2-52∴PD=2.25,
    ∴BP=4-2.25=1.75=0.25t,
    ∴t=7秒,
    当点P运动t秒后有PA⊥AB时,同理可证得PD=2.25,
    ∴BP=4+2.25=6.25=0.25t,
    ∴t=25秒,
    ∴点P运动的时间为7秒或25秒.
    点评:本题利用了等腰三角形的性质和勾股定理求解.
    16、±
    【解析】
    ∵与同时成立,
    ∴ 故只有x2﹣4=0,即x=±2,
    又∵x﹣2≠0,
    ∴x=﹣2,y==﹣,
    4y﹣3x=﹣1﹣(﹣6)=5,
    ∴4y﹣3x的平方根是±.
    故答案:±.

    三、解答题(共8题,共72分)
    17、(1)见解析(2)见解析
    【解析】
    (1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
    (2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
    【详解】
    解:(1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE.
    ∵E是AD的中点,AD是BC边上的中线,
    ∴AE=DE,BD=CD.
    在△AFE和△DBE中,
    ∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
    ∴△AFE≌△DBE(AAS)
    ∴AF=BD.
    ∴AF=DC.
    (2)四边形ADCF是菱形,证明如下:
    ∵AF∥BC,AF=DC,
    ∴四边形ADCF是平行四边形.
    ∵AC⊥AB,AD是斜边BC的中线,
    ∴AD=DC.
    ∴平行四边形ADCF是菱形
    18、 (1)8;(2)1.
    【解析】
    (1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;
    (2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AD∥BC,AO=CO,
    ∴∠EAO=∠FCO,
    在△AOE和△COF中

    ∴△AOE≌△COF,
    ∴AE=CF=3,
    ∴BC=BF+CF=5+3=8;
    (2)∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,AD=BC=8,
    ∵AC+BD=20,
    ∴AO+BO=10,
    ∴△AOD的周长=AO+BO+AD=1.
    【点睛】
    本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.
    19、(1)25, 90°;
    (2)见解析;
    (3)该市 “活动时间不少于5天”的大约有1.
    【解析】
    试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360°即得扇形的圆心角;
    (2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;
    (3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.
    (1)由图可得
    该扇形圆心角的度数为90°;
    (2)“活动时间为6天” 的人数,如图所示:

    (3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1
    ∴该市“活动时间不少于5天”的大约有1人.
    考点:统计的应用
    点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.
    20、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
    【解析】
    分析:(1)令已知的直线的解析式中x=0,可求出B点坐标,令y=0,可求出A点坐标;(2)根据A、B的坐标易得到M点坐标,若抛物线的顶点C在⊙M上,那么C点必为抛物线对称轴与⊙O的交点;根据A、B的坐标可求出AB的长,进而可得到⊙M的半径及C点的坐标,再用待定系数法求解即可;
    (3)在(2)中已经求得了C点坐标,即可得到AC、BC的长;由圆周角定理:
    ∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P点坐标.
    本题解析:(1)对于直线,当时,;当时,
    所以A(﹣8,0),B(0,﹣6);
    (2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,
    ∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),
    设抛物线的解析式为y=a(x+4)²+2,
    把B(0,﹣6)代入得16a+2=﹣6,解得a= ,
    ∴抛物线的解析式为 ,即;
    (3)存在.
    当y=0时, ,解得x,=﹣2,x,=﹣6,
    ∴D(﹣6,0),E(﹣2,0),

    设P(t,-6),

    ∴=20,
    即||=1,当=-1,
    解得, ,
    此时P点坐标为(﹣4+,-1)或(﹣4﹣,-1);
    当时 ,解得=﹣4+,=﹣4﹣;
    此时P点坐标为(﹣4+,1)或(﹣4﹣,1).

    综上所述,P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
    点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.
    21、(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.
    【解析】
    (1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得
    答:每个文具盒14元,每支钢笔15元.
    (2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.
    买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:
    当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),
    即y2=12x+1.
    (3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;
    当y1=y2,即12.6x=12x+1时,解得x=2;
    当y1>y2,即12.6x>12x+1时,解得x>2.
    综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;
    当购买奖品2件时,买文具盒和买钢笔钱数相等;
    当购买奖品超过2件时,买钢笔省钱.
    22、(1),;(2)证明见解析.
    【解析】
    试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
    (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
    试题解析:(1)设方程的另一根为x1,
    ∵该方程的一个根为1,∴.解得.
    ∴a的值为,该方程的另一根为.
    (2)∵,
    ∴不论a取何实数,该方程都有两个不相等的实数根.
    考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
    23、(1)证明见解析;(2);3.
    【解析】
    试题分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
    (2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
    试题解析:(1)证明:如图1,连接OD、OE、ED.
    ∵BC与⊙O相切于一点D,
    ∴OD⊥BC,
    ∴∠ODB=90°=∠C,
    ∴OD∥AC,
    ∵∠B=30°,
    ∴∠A=60°,
    ∵OA=OE,
    ∴△AOE是等边三角形,
    ∴AE=AO=0D,
    ∴四边形AODE是平行四边形,
    ∵OA=OD,
    ∴四边形AODE是菱形.

    (2)解:设⊙O的半径为r.
    ∵OD∥AC,
    ∴△OBD∽△ABC.
    ∴,即8r=6(8﹣r).
    解得r=,
    ∴⊙O的半径为.
    如图2,连接OD、DF.
    ∵OD∥AC,
    ∴∠DAC=∠ADO,
    ∵OA=OD,
    ∴∠ADO=∠DAO,
    ∴∠DAC=∠DAO,
    ∵AF是⊙O的直径,
    ∴∠ADF=90°=∠C,
    ∴△ADC∽△AFD,
    ∴,
    ∴AD2=AC•AF,
    ∵AC=6,AF=,
    ∴AD2=×6=45,
    ∴AD==3.

    点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
    考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.
    24、(1)10,144;(2)详见解析;(3)96
    【解析】
    (1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;
    (2)依据D类型留守学生的数量,即可将条形统计图补充完整;
    (3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.
    【详解】
    解:(1)2÷20%=10(人),
    ×100%×360°=144°,
    故答案为10,144;
    (2)10﹣2﹣4﹣2=2(人),
    如图所示:

    (3)2400××20%=96(人),
    答:估计该校将有96名留守学生在此关爱活动中受益.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.

    相关试卷

    河北省献县重点达标名校2021-2022学年中考数学模试卷含解析:

    这是一份河北省献县重点达标名校2021-2022学年中考数学模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,已知点A等内容,欢迎下载使用。

    河北省秦皇岛市海港区达标名校2021-2022学年中考数学四模试卷含解析:

    这是一份河北省秦皇岛市海港区达标名校2021-2022学年中考数学四模试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年湖南邵阳达标名校中考数学四模试卷含解析:

    这是一份2022年湖南邵阳达标名校中考数学四模试卷含解析,共27页。试卷主要包含了计算÷的结果是,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map