2022年河北保定曲阳县中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B. C. D.
2.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
3.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于( )
A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
4.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是( )
A.60° B.65° C.70° D.75°
5.下列图形是中心对称图形的是( )
A. B. C. D.
6.2016的相反数是( )
A. B. C. D.
7.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A. B. C. D.
8.下列各式计算正确的是( )
A. B. C. D.
9.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是( )
A.26°. B.44°. C.46°. D.72°
10.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )
A.∠NOQ=42° B.∠NOP=132°
C.∠PON比∠MOQ大 D.∠MOQ与∠MOP互补
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.
12.若a﹣3有平方根,则实数a的取值范围是_____.
13.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程
已知:线段a、b,
求作:.使得斜边AB=b,AC=a
作法:如图.
(1)作射线AP,截取线段AB=b;
(2)以AB为直径,作⊙O;
(3)以点A为圆心,a的长为半径作弧交⊙O于点C;
(4)连接AC、CB.即为所求作的直角三角形.
请回答:该尺规作图的依据是______.
14.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.
15.正十二边形每个内角的度数为 .
16.三角形的每条边的长都是方程的根,则三角形的周长是 .
17.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.
三、解答题(共7小题,满分69分)
18.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
19.(5分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.
(1)a 0, 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
20.(8分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
(1)判断△ABC的形状,并证明你的结论;
(2)如图1,若BE=CE=,求⊙A的面积;
(3)如图2,若tan∠CEF=,求cos∠C的值.
21.(10分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
22.(10分)如图1所示,点E在弦AB所对的优弧上,且为半圆,C是上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.
小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:
x/cm
0
1
2
3
4
5
6
y1/cm
0
0.78
1.76
2.85
3.98
4.95
4.47
y2/cm
4
4.69
5.26
5.96
5.94
4.47
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:
①连接BE,则BE的长约为 cm.
②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为 cm.
23.(12分)如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
(1)求证:四边形ABCD是平行四边形;
(2)若AB=BE=2,sin∠ACD= ,求四边形ABCD的面积.
24.(14分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.
(1)求证:BD是⊙O的切线;
(2)若AE=9, CE=12, 求BF的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
2、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
3、A
【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
【详解】
由数轴可知,b<a<0<c,
∴c-a>0,a+b<0,
则|c-a|-|a+b|=c-a+a+b=c+b,
故选A.
【点睛】
本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
4、C
【解析】
试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°.
考点:切线的性质、三角形外角的性质、圆的基本性质.
5、B
【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
【详解】
请在此输入详解!
6、C
【解析】
根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.
故选C.
7、A
【解析】
此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.
8、B
【解析】
A选项中,∵不是同类二次根式,不能合并,∴本选项错误;
B选项中,∵,∴本选项正确;
C选项中,∵,而不是等于,∴本选项错误;
D选项中,∵,∴本选项错误;
故选B.
9、A
【解析】
先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
【详解】
解:∵图中是正五边形.
∴∠EAB=108°.
∵太阳光线互相平行,∠ABG=46°,
∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
故选A.
【点睛】
此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
10、C
【解析】
试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.
考点:角的度量.
二、填空题(共7小题,每小题3分,满分21分)
11、50°
【解析】
先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.
【详解】
如图所示:
∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,
∴∠BEF=∠1+∠F=50°,
∵AB∥CD,
∴∠2=∠BEF=50°,
故答案是:50°.
【点睛】
考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).
12、a≥1.
【解析】
根据平方根的定义列出不等式计算即可.
【详解】
根据题意,得
解得:
故答案为
【点睛】
考查平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.
13、等圆的半径相等,直径所对的圆周角是直角,三角形定义
【解析】
根据圆周角定理可判断△ABC为直角三角形.
【详解】
根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
14、1.
【解析】
设小矩形的长为x,宽为y,则由图1可得5y=3x;由图2可知2y-x=2.
【详解】
解:设小矩形的长为x,宽为y,则可列出方程组,
,解得,
则小矩形的面积为6×10=1.
【点睛】
本题考查了二元一次方程组的应用.
15、
【解析】
首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.
【详解】
试题分析:正十二边形的每个外角的度数是:=30°,
则每一个内角的度数是:180°﹣30°=150°.
故答案为150°.
16、6或2或12
【解析】
首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.
【详解】
由方程,得=2或1.
当三角形的三边是2,2,2时,则周长是6;
当三角形的三边是1,1,1时,则周长是12;
当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;
当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.
综上所述此三角形的周长是6或12或2.
17、(,)
【解析】
根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.
【详解】
解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,
则△DEF的边长是△ABC边长的倍,
∴点F的坐标为(1×,×),即(,),
故答案为:(,).
【点睛】
本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.
三、解答题(共7小题,满分69分)
18、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用等腰三角形的性质和三角形内角和即可得出结论;
(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
【详解】
(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如图②,连接与,交点为,连接
四边形是矩形
(3)如图3,过点做于点
四边形是矩形
,
是等边三角形
,
由(2)知,
在中,
,
【点睛】
此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.
19、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
【解析】
(1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
(2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
(3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
【详解】
(1)a>0,>0;
(2)∵直线x=2是对称轴,A(﹣2,0),
∴B(6,0),
∵点C(0,﹣4),
将A,B,C的坐标分别代入,解得:,,,
∴抛物线的函数表达式为;
(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,
则四边形ACEF即为满足条件的平行四边形,
∵抛物线关于直线x=2对称,
∴由抛物线的对称性可知,E点的横坐标为4,
又∵OC=4,∴E的纵坐标为﹣4,
∴存在点E(4,﹣4);
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
∵AC∥E′F′,
∴∠CAO=∠E′F′G,
又∵∠COA=∠E′GF′=90°,AC=E′F′,
∴△CAO≌△E′F′G,
∴E′G=CO=4,
∴点E′的纵坐标是4,
∴,解得:,,
∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).
20、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
【解析】
(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cos∠C即可.
【详解】
解:∵,
∴,
∴△CEF∽△CBE,
∴∠CBE=∠CEF,
∵AE=AD,
∴∠ADE=∠AED=∠FEC=∠CBE,
∵BD为直径,
∴∠ADE+∠ABE=90°,
∴∠CBE+∠ABE=90°,
∴∠DBC=90°△ABC为直角三角形.
(2)∵BE=CE
∴设∠EBC=∠ECB=x,
∴∠BDE=∠EBC=x,
∵AE=AD
∴∠AED=∠ADE=x,
∴∠CEF=∠AED=x
∴∠BFE=2x
在△BDF中由△内角和可知:
3x=90°
∴x=30°
∴∠ABE=60°
∴AB=BE=
∴
(3)由(1)知:∠D=∠CFE=∠CBE,
∴tan∠CBE=,
设EF=a,BE=2a,
∴BF=,BD=2BF=,
∴AD=AB=,
∴,DE=2BE=4a,过F作FK∥BD交CE于K,
∴,
∵,
∴
∴,
∴tan∠C=
∴cos∠C=.
【点睛】
此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.
21、(1)落回到圈的概率;(2)可能性不一样.
【解析】
(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
【详解】
(1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
落回到圈的概率;
(2)列表得:
1
2
3
4
5
6
1
2
3
4
5
6
共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
∴,
∵,
可能性不一样
【点睛】
本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
22、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.
【解析】
(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=,得出AD=AB+BD=4.9367(cm),再由勾股定理求出AC即可;
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;
(3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;
②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.
【详解】
(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:
∵CD⊥AB,
∴(cm),
∴AD=AB+BD=4+0.9367=4.9367(cm),
∴(cm);
补充完整如下表:
(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:
(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,
∴BE=BC=6cm,
故答案为:6;
②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:
当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;
当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;
综上所述:BC的长度约为6cm或4.1cm;
故答案为:6或4.1.
【点睛】
本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.
23、(1)证明见解析;(2)S平行四边形ABCD =3 .
【解析】
试题分析:(1)根据平行四边形的性质得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根据平行线的判定得出AD∥BC,根据平行四边形的判定推出即可;
(2)证明△ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积.
试题解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,
∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,
∵AB∥CD,∴四边形ABCD是平行四边形;
(2)∵sin∠ACD=,∴∠ACD=60°,
∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,
∵AB=BE=2,∴△ABE是等边三角形,∴AE=AB=2,
∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE= CD=1,∴DE=CE=,AC=AE+CE=3,
∴S平行四边形ABCD =2S△ACD =AC•DE=3.
24、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;
(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.
试题解析:(1)证明:∵,
∴.
∵CD平分,BC=BD,
∴,.
∴.
∴∥.
∴.
∵AB是⊙O的直径,
∴BD是⊙O的切线.
(2)连接AC,
∵AB是⊙O直径,
∴.
∵,
可得.
∴
在Rt△CEB中,∠CEB=90°,由勾股定理得
∴.
∵,∠EFC =∠BFD,
∴△EFC∽△BFD.
∴.
∴.
∴BF=1.
考点:切线的判定,相似三角形,勾股定理
河北省保定曲阳县联考2022年中考数学最后一模试卷含解析: 这是一份河北省保定曲阳县联考2022年中考数学最后一模试卷含解析,共21页。试卷主要包含了的算术平方根是,如图,双曲线y=等内容,欢迎下载使用。
河北保定满城区龙门中学2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份河北保定满城区龙门中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。试卷主要包含了《语文课程标准》规定等内容,欢迎下载使用。
2021-2022学年河北保定曲阳县重点名校中考数学对点突破模拟试卷含解析: 这是一份2021-2022学年河北保定曲阳县重点名校中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了下列计算正确的是,计算的结果等于等内容,欢迎下载使用。