2020年江苏省扬州市中考数学试卷
展开
这是一份2020年江苏省扬州市中考数学试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年江苏省扬州市中考数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.(3分)(2020•扬州)实数3的相反数是( )
A.﹣3 B.13 C.3 D.±3
2.(3分)(2020•扬州)下列各式中,计算结果为m6的是( )
A.m2•m3 B.m3+m3 C.m12÷m2 D.(m2 )3
3.(3分)(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.(3分)(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )
A.
B.
C.
D.
5.(3分)(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:
准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
6.(3分)(2020•扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为( )
A.100米 B.80米 C.60米 D.40米
7.(3分)(2020•扬州)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为( )
A.21313 B.31313 C.23 D.32
8.(3分)(2020•扬州)小明同学利用计算机软件绘制函数y=ax(x+b)2(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足( )
A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.(3分)(2020•扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 .
10.(3分)(2020•扬州)分解因式:a3﹣2a2+a= .
11.(3分)(2020•扬州)代数式x+23在实数范围内有意义,则实数x的取值范围是 .
12.(3分)(2020•扬州)方程(x+1)2=9的根是 .
13.(3分)(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为 .
14.(3分)(2020•扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 尺高.
15.(3分)(2020•扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 cm2.
16.(3分)(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a= cm.
17.(3分)(2020•扬州)如图,在△ABC中,按以下步骤作图:
①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.
②分别以点D、E为圆心,大于12DE的同样长为半径作弧,两弧交于点F.
③作射线BF交AC于点G.
如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为 .
18.(3分)(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=14DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为 .
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(8分)(2020•扬州)计算或化简:
(1)2sin60°+(12)﹣1-12.
(2)x-1x÷x2-1x2+x.
20.(8分)(2020•扬州)解不等式组x+5≤0,3x-12≥2x+1,并写出它的最大负整数解.
21.(8分)(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 ,扇形统计图中表示A等级的扇形圆心角为 °;
(2)补全条形统计图;
(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
22.(8分)(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是 ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
23.(10分)(2020•扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
进货单
商品
进价(元/件)
数量(件)
总金额(元)
甲
7200
乙
3200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
李阿姨:我记得甲商品进价比乙商品进价每件高50%.
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品的进价,并帮助他们补全进货单.
24.(10分)(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
(1)若OE=32,求EF的长;
(2)判断四边形AECF的形状,并说明理由.
25.(10分)(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
(1)试判断AE与⊙O的位置关系,并说明理由;
(2)若AC=6,求阴影部分的面积.
26.(10分)(2020•扬州)阅读感悟:
有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.
本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)已知二元一次方程组2x+y=7,x+2y=8,则x﹣y= ,x+y= ;
(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= .
27.(12分)(2020•扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:OC∥AD;
(2)如图2,若DE=DF,求AEAF的值;
(3)当四边形ABCD的周长取最大值时,求DEDF的值.
28.(12分)(2020•扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
(1)当n=1时.
①求线段AB所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
(2)若小明的说法完全正确,求n的取值范围.
2020年江苏省扬州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.(3分)(2020•扬州)实数3的相反数是( )
A.﹣3 B.13 C.3 D.±3
【解答】解:实数3的相反数是:﹣3.
故选:A.
2.(3分)(2020•扬州)下列各式中,计算结果为m6的是( )
A.m2•m3 B.m3+m3 C.m12÷m2 D.(m2 )3
【解答】解:A、m2•m3=m5,故此选项不合题意;
B、m3+m3=2m3,故此选项不合题意;
C、m12÷m2=m10,故此选项不合题意;
D、(m2 )3=m6,故此选项符合题意.
故选:D.
3.(3分)(2020•扬州)在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:∵x2+2>0,
∴点P(x2+2,﹣3)所在的象限是第四象限.
故选:D.
4.(3分)(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是( )
A.
B.
C.
D.
【解答】解:A、是轴对称图形,故本选项不合题意;
B、是轴对称图形,故本选项不合题意;
C、不是轴对称图形,故本选项符合题意;
D、是轴对称图形,故本选项不合题意.
故选:C.
5.(3分)(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:
准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,
故选:C.
6.(3分)(2020•扬州)如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D…照这样走下去,小明第一次回到出发点A时所走的路程为( )
A.100米 B.80米 C.60米 D.40米
【解答】解:∵小明每次都是沿直线前进10米后向左转45度,
∴他走过的图形是正多边形,
∴边数n=360°÷45°=8,
∴他第一次回到出发点A时,一共走了8×10=80(m).
故选:B.
7.(3分)(2020•扬州)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为( )
A.21313 B.31313 C.23 D.32
【解答】解:如图,连接BC.
∵∠ADC和∠ABC所对的弧长都是AC,
∴根据圆周角定理知,∠ADC=∠ABC.
在Rt△ACB中,根据锐角三角函数的定义知,
sin∠ABC=ACAB,
∵AC=2,BC=3,
∴AB=AC2+BC2=13,
∴sin∠ABC=213=21313,
∴sin∠ADC=21313.
故选:A.
8.(3分)(2020•扬州)小明同学利用计算机软件绘制函数y=ax(x+b)2(a、b为常数)的图象如图所示,由学习函数的经验,可以推断常数a、b的值满足( )
A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0
【解答】解:由图象可知,当x>0时,y<0,
∴a<0;
x=﹣b时,函数值不存在,
∴﹣b<0,
∴b>0;
故选:C.
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.(3分)(2020•扬州)2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6500000辆营运车辆导航设施应用北斗系统,数据6500000用科学记数法表示为 6.5×106 .
【解答】解:6500000用科学记数法表示应为:6.5×106,
故答案为:6.5×106.
10.(3分)(2020•扬州)分解因式:a3﹣2a2+a= a(a﹣1)2 .
【解答】解:a3﹣2a2+a
=a(a2﹣2a+1)
=a(a﹣1)2.
故答案为:a(a﹣1)2.
11.(3分)(2020•扬州)代数式x+23在实数范围内有意义,则实数x的取值范围是 x≥﹣2 .
【解答】解:代数式x+23在实数范围内有意义,
则x+2≥0,
解得:x≥﹣2.
故答案为:x≥﹣2.
12.(3分)(2020•扬州)方程(x+1)2=9的根是 x1=2,x2=﹣4 .
【解答】解:(x+1)2=9,
x+1=±3,
x1=2,x2=﹣4.
故答案为:x1=2,x2=﹣4.
13.(3分)(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为 4 .
【解答】解:∵S侧=πrl,
∴3πl=12π,
∴l=4.
答:这个圆锥的母线长为4.
故答案为:4.
14.(3分)(2020•扬州)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答:折断处离地面 4.55 尺高.
【解答】解:设折断处离地面x尺,
根据题意可得:x2+32=(10﹣x)2,
解得:x=4.55.
答:折断处离地面4.55尺.
故答案为:4.55.
15.(3分)(2020•扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 2.4 cm2.
【解答】解:∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
∴点落入黑色部分的概率为0.6,
∵边长为2cm的正方形的面积为4cm2,
设黑色部分的面积为S,
则S4=0.6,
解得S=2.4(cm2).
答:估计黑色部分的总面积约为2.4cm2.
故答案为:2.4.
16.(3分)(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a= 3 cm.
【解答】解:如图,连接AC,过点B作BD⊥AC于D,
由正六边形,得
∠ABC=120°,AB=BC=a,
∠BCD=∠BAC=30°.
由AC=3,得CD=1.5.
cos∠BCD=CDBC=32,即1.5a=32,
解得a=3,
故答案为:3.
17.(3分)(2020•扬州)如图,在△ABC中,按以下步骤作图:
①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.
②分别以点D、E为圆心,大于12DE的同样长为半径作弧,两弧交于点F.
③作射线BF交AC于点G.
如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为 27 .
【解答】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,
根据作图过程可知:
BG是∠ABC的平分线,
∴GM=GN,
∵△ABG的面积为18,
∴12×AB×GM=18,
∴4GM=18,
∴GM=92,
∴△CBG的面积为:12×BC×GN=12×12×92=27.
故答案为:27.
18.(3分)(2020•扬州)如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使得DF=14DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为 93 .
【解答】解:作CH⊥AB于点H,
∵在▱ABCD中,∠B=60°,BC=8,
∴CH=43,
∵四边形ECGF是平行四边形,
∴EF∥CG,
∴△EOD∽△GOC,
∴EOGO=DOOC=EDGC,
∵DF=14DE,
∴DEEF=45,
∴EDGC=45,
∴EOGO=45,
∴当EO取得最小值时,EG即可取得最小值,
当EO⊥CD时,EO取得最小值,
∴CH=EO,
∴EO=43,
∴GO=53,
∴EG的最小值是93,
故答案为:93.
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(8分)(2020•扬州)计算或化简:
(1)2sin60°+(12)﹣1-12.
(2)x-1x÷x2-1x2+x.
【解答】解:(1)原式=2×32+2﹣23
=3+2﹣23
=2-3;
(2)原式=x-1x•x(x+1)(x-1)(x+1)
=1.
20.(8分)(2020•扬州)解不等式组x+5≤0,3x-12≥2x+1,并写出它的最大负整数解.
【解答】解:解不等式x+5≤0,得x≤﹣5,
解不等式3x-12≥2x+1,得:x≤﹣3,
则不等式组的解集为x≤﹣5,
所以不等式组的最大负整数解为﹣5.
21.(8分)(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量是 500 ,扇形统计图中表示A等级的扇形圆心角为 108 °;
(2)补全条形统计图;
(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
【解答】解:(1)本次调查的样本容量是150÷30%=500,
扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,
故答案为:500,108;
(2)B等级的人数为:500×40%=200,
补全的条形统计图如右图所示;
(3)2000×50500=200(人),
答:该校需要培训的学生人有200人.
22.(8分)(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
(1)小明从A测温通道通过的概率是 13 ;
(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
【解答】解:(1)小明从A测温通道通过的概率是13,
故答案为:13;
(2)列表格如下:
A
B
C
A
A,A
B,A
C,A
B
A,B
B,B
C,B
C
A,C
B,C
C,C
由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,
所以小明和小丽从同一个测温通道通过的概率为39=13.
23.(10分)(2020•扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
进货单
商品
进价(元/件)
数量(件)
总金额(元)
甲
7200
乙
3200
商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
李阿姨:我记得甲商品进价比乙商品进价每件高50%.
王师傅:甲商品比乙商品的数量多40件.
请你求出乙商品的进价,并帮助他们补全进货单.
【解答】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,
依题意,得:7200(1+50%)x-3200x=40,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴(1+50%)x=60,3200x=80,7200(1+50%)x=120.
答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.
24.(10分)(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
(1)若OE=32,求EF的长;
(2)判断四边形AECF的形状,并说明理由.
【解答】解:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AO=CO,
∴∠FCO=∠EAO,
又∵∠AOE=∠COF,
∴△AOE≌△COF(ASA),
∴OE=OF=32,
∴EF=2OE=3;
(2)四边形AECF是菱形,
理由:∵△AOE≌△COF,
∴AE=CF,
又∵AE∥CF,
∴四边形AECF是平行四边形,
又∵EF⊥AC,
∴四边形AECF是菱形.
25.(10分)(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
(1)试判断AE与⊙O的位置关系,并说明理由;
(2)若AC=6,求阴影部分的面积.
【解答】(1)证明:连接OA、AD,如图,
∵CD为⊙O的直径,
∴∠DAC=90°,
又∵∠ADC=∠B=60°,
∴∠ACD=30°,
又∵AE=AC,OA=OD,
∴△ADO为等边三角形,
∴∠E=30°,∠ADO=∠DAO=60°,
∴∠PAD=30°,
∴∠EAD+∠DAO=90°,
∴OA⊥E,
∴AE为⊙O的切线;
(2)解:作OF⊥AC于F,
由(1)可知△AEO为直角三角形,且∠E=30°,
∴OA=23,AE=6,
∴阴影部分的面积为12×6×23-60π×(23)2360=63-2π.
故阴影部分的面积为63-2π.
26.(10分)(2020•扬州)阅读感悟:
有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.
本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.
解决问题:
(1)已知二元一次方程组2x+y=7,x+2y=8,则x﹣y= ﹣1 ,x+y= 5 ;
(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
(3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= ﹣11 .
【解答】解:(1)2x+y=7①x+2y=8②.
由①﹣②可得:x﹣y=﹣1,
由13(①+②)可得:x+y=5.
故答案为:﹣1;5.
(2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,
依题意,得:20m+3n+2p=32①39m+5n+3p=58②,
由2×①﹣②可得m+n+p=6,
∴5m+5n+5p=5×6=30.
答:购买5支铅笔、5块橡皮、5本日记本共需30元.
(3)依题意,得:3a+5b+c=15①4a+7b+c=28②,
由3×①﹣2×②可得:a+b+c=﹣11,
即1*1=﹣11.
故答案为:﹣11.
27.(12分)(2020•扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
(1)求证:OC∥AD;
(2)如图2,若DE=DF,求AEAF的值;
(3)当四边形ABCD的周长取最大值时,求DEDF的值.
【解答】(1)证明:∵AO=OD,
∴∠OAD=∠ADO,
∵OC平分∠BOD,
∴∠DOC=∠COB,
又∵∠DOC+∠COB∠=∠OAD+∠ADO,
∴∠ADO=∠DOC,
∴CO∥AD;
(2)解:如图1,
∵OA=OB=OC,
∴∠ADB=90°,
∴△AOD和△ABD为等腰直角三角形,
∴AD=2AO,
∴ADAO=2,
∵DE=EF,
∴∠DFE=∠DEF,
∵∠DFE=∠AFO,
∴∠AFO=∠AED,
又∠ADE=∠AOF=90°,
∴△ADE∽△AOF,
∴AEAF=ADAO=2.
(3)解:如图2,
∵OD=OB,∠BOC=∠DOC,
∴△BOC≌△DOC(SAS),
∴BC=CD,
设BC=CD=x,CG=m,则OG=2﹣m,
∵OB2﹣OG2=BC2﹣CG2,
∴4﹣(2﹣m)2=x2﹣m2,
解得:m=14x2,
∴OG=2-14x2,
∵OD=OB,∠DOG=∠BOG,
∴G为BD的中点,
又∵O为AB的中点,
∴AD=2OG=4-12x2,
∴四边形ABCD的周长为2BC+AD+AB=2x+4-12x2+4=-12x2+2x+8=-12(x-2)2+10,
∵-12<0,
∴x=2时,四边形ABCD的周长有最大值为10.
∴BC=2,
∴△BCO为等边三角形,
∴∠BOC=60°,
∵OC∥AD,
∴∠DAC=∠COB=60°,
∴∠ADF=∠DOC=60°,∠DAE=30°,
∴∠AFD=90°,
∴DEDA=33,DF=12DA,
∴DEDF=233.
28.(12分)(2020•扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
(1)当n=1时.
①求线段AB所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
(2)若小明的说法完全正确,求n的取值范围.
【解答】解:(1)①当n=1时,B(5,1),
设线段AB所在直线的函数表达式为y=kx+b,
把A(1,2)和B(5,1)代入得:k+b=25k+b=1,
解得:k=-14b=94,
则线段AB所在直线的函数表达式为y=-14x+94;
②不完全同意小明的说法,理由为:
k=xy=x(-14x+94)=-14(x-92)2+8116,
∵1≤x≤5,
∴当x=1时,kmin=2;
当x=92时,kmax=8116,
则不完全同意;
(2)当n=2时,A(1,2),B(5,2),符合;
当n≠2时,y=n-24x+10-n4,
k=x(n-24x+10-n4)=n-24(x-n-102n-4)2+(10-n)216(2-n),
先增大当x取92时,k为8116,为最大,到B为5时减小,
即在直线上A到x=92时增大,到5时减小,
当92<x≤5时,k在减小,
当n<2时,k随x的增大而增大,则有n-102n-4≥5,
此时109≤n<2;
当n>2时,k随x的增大而增大,则有n-102n-4≤1,
此时n>2,
综上,n≥109.
相关试卷
这是一份2022年江苏省扬州市中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年江苏省扬州市中考数学试卷,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年江苏省扬州市中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。