山东省潍坊市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类
展开
这是一份山东省潍坊市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共13页。试卷主要包含了因式分解,方程组的解为 ,,则n的值为 等内容,欢迎下载使用。
山东省潍坊市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类一.非负数的性质:算术平方根(共1小题)1.(2020•潍坊)若|a﹣2|+=0,则a+b= .二.提公因式法与公式法的综合运用(共1小题)2.(2020•潍坊)因式分解:x2y﹣9y= .三.解二元一次方程组(共1小题)3.(2022•潍坊)方程组的解为 .四.解分式方程(共1小题)4.(2021•潍坊)若x<2,且+|x﹣2|+x﹣1=0,则x= .五.分式方程的增根(共1小题)5.(2020•潍坊)若关于x的分式方程+1有增根,则m= .六.规律型:点的坐标(共1小题)6.(2021•潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点An(506,﹣505),则n的值为 .七.一次函数图象上点的坐标特征(共1小题)7.(2021•潍坊)甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为 .八.反比例函数系数k的几何意义(共1小题)8.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB= .(结果用a,b表示)九.弧长的计算(共1小题)9.(2020•潍坊)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;,,,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是 .一十.作图—基本作图(共1小题)10.(2020•潍坊)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α= °.一十一.翻折变换(折叠问题)(共2小题)11.(2022•潍坊)小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为 .12.(2020•潍坊)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE= .一十二.坐标与图形变化-旋转(共1小题)13.(2022•潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为 .一十三.位似变换(共1小题)14.(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为 .
参考答案与试题解析一.非负数的性质:算术平方根(共1小题)1.(2020•潍坊)若|a﹣2|+=0,则a+b= 5 .【解答】解:根据题意得,a﹣2=0,b﹣3=0,解得a=2,b=3,∴a+b=2+3=5.故答案为:5.二.提公因式法与公式法的综合运用(共1小题)2.(2020•潍坊)因式分解:x2y﹣9y= y(x+3)(x﹣3) .【解答】解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).三.解二元一次方程组(共1小题)3.(2022•潍坊)方程组的解为 .【解答】解:,由①×2得4x+6y=26③,由②×3得9x﹣6y=0④,由③+④得13x=26,解得x=2,将x=2代入②得3×2﹣2y=0,解得y=3,所以原方程组的解为.故答案为:.四.解分式方程(共1小题)4.(2021•潍坊)若x<2,且+|x﹣2|+x﹣1=0,则x= 1 .【解答】解:+|x﹣2|+x﹣1=0,∵x<2,∴方程为+2﹣x+x﹣1=0,即=﹣1,方程两边都乘x﹣2,得1=﹣(x﹣2),解得:x=1,经检验x=1是原方程的解,故答案为:1.五.分式方程的增根(共1小题)5.(2020•潍坊)若关于x的分式方程+1有增根,则m= 3 .【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.六.规律型:点的坐标(共1小题)6.(2021•潍坊)在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点An(506,﹣505),则n的值为 2022 .【解答】解:∵到达终点An(506,﹣505),且此点在第四象限,根据题意和到达位置的坐标可知:A6(2,﹣1),A10(3,﹣2),A14(4,﹣3)•••,∵6=2+4×(2﹣1),10=2+4×(3﹣1),14=2+4×(4﹣1),•••n=2+4×(506﹣1)=2022.故答案为:2022.七.一次函数图象上点的坐标特征(共1小题)7.(2021•潍坊)甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为 y=﹣x+1(答案不唯一) .【解答】解:设一次函数解析式为y=kx+b,∵函数的图象经过点(0,1),∴b=1,∵y随x的增大而减小,∴k<0,取k=﹣1,∴y=﹣x+1,此函数图象不经过第三象限,∴满足题意的一次函数解析式为:y=﹣x+1(答案不唯一).八.反比例函数系数k的几何意义(共1小题)8.(2021•潍坊)如图,在直角坐标系中,O为坐标原点,函数y=与y=(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB= a﹣ .(结果用a,b表示)【解答】解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,∴阴影部分的面积S△AOB=mn﹣b﹣b﹣(m﹣)(n﹣)=mn﹣b﹣(mn﹣b﹣b+)=mn﹣b﹣mn+b﹣=a﹣.故答案为:a﹣.九.弧长的计算(共1小题)9.(2020•潍坊)如图,四边形ABCD是正方形,曲线DA1B1C1D1A2…是由一段段90度的弧组成的.其中:的圆心为点A,半径为AD;的圆心为点B,半径为BA1;的圆心为点C,半径为CB1;的圆心为点D,半径为DC1;,,,…的圆心依次按点A,B,C,D循环.若正方形ABCD的边长为1,则的长是 4039π .【解答】解:由图可知,曲线DA1B1C1D1A2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD=AA1=1,BA1=BB1=2,……,ADn﹣1=AAn=4(n﹣1)+1,BAn=BBn=4(n﹣1)+2,故的半径为BA2020=BB2020=4(2020﹣1)+2=8078,的弧长=.故答案为:4039π.一十.作图—基本作图(共1小题)10.(2020•潍坊)如图,在Rt△ABC中,∠C=90°,∠B=20°,PQ垂直平分AB,垂足为Q,交BC于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边AC,AB于点D,E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧相交于点F;③作射线AF.若AF与PQ的夹角为α,则α= 55 °.【解答】解:∵△ABC是直角三角形,∠C=90°,∴∠B+∠BAC=90°,∵∠B=20°,∴∠BAC=90°﹣∠B=90°﹣20°=70°,∵AM是∠BAC的平分线,∴∠BAM=BAC=35°,∵PQ是AB的垂直平分线,∴△AMQ是直角三角形,∴∠AMQ+∠BAM=90°,∴∠AMQ=90°﹣∠BAM=90°﹣35°=55°,∴α=∠AMQ=55°.故答案为:55°.一十一.翻折变换(折叠问题)(共2小题)11.(2022•潍坊)小莹按照如图所示的步骤折叠A4纸,折完后,发现折痕AB′与A4纸的长边AB恰好重合,那么A4纸的长AB与宽AD的比值为 .【解答】解:由第②次折叠知,AB=AB',设AD'=AD=x,由第①次折叠知,∠B'AB=45°,∴△AD'B'是等腰直角三角形,∴AB'=AD',∴AB与宽AD的比值为,故答案为:,12.(2020•潍坊)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则sin∠DAE= .【解答】解:矩形ABCD中,GC=4,CE=3,∠C=90°,∴GE=,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE=∠C=90°,∠B=∠AFG=90°,∴BG=GF=GC=4,∠AFG+∠EFG=180°,∴BC=AD=8,点A,点F,点E三点共线,∵∠AGB+∠AGF+∠EGC+∠EGF=180°,∴∠AGE=90°,∴Rt△EGF∽Rt△EAG,∴,即,∴,∴DE=,∴,故答案为:.一十二.坐标与图形变化-旋转(共1小题)13.(2022•潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,再沿y轴方向向上平移1个单位长度,则点B″的坐标为 (﹣,+1) .【解答】解:过B'作B'D⊥y轴于D,连接OB,OB',如图:∵边长为2个单位长度的正方形ABCO绕原点O逆时针旋转75°,∴∠BOB'=75°,∠BOC=45°,OB=OB'=2,∴∠B'OD=30°,∴B'D=OB'=,OD=B'D=,∴B'(﹣,),∵再沿y轴方向向上平移1个单位长度,∴B''(﹣,+1),故答案为:(﹣,+1).一十三.位似变换(共1小题)14.(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为 4π .【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.
相关试卷
这是一份山东省潍坊市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共13页。试卷主要包含了中记载了一个测量塔高的问题等内容,欢迎下载使用。
这是一份山东省烟台市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共15页。试卷主要包含了,使得运算结果等于24,,则AB的长为 等内容,欢迎下载使用。
这是一份山东省青岛市三年(2020-2022)中考数学真题分类汇编-02填空题知识点分类,共19页。试卷主要包含了﹣的绝对值是 ,×= ,之间的反比例函数关系如图所示,与x轴交点的个数是 等内容,欢迎下载使用。