搜索
    上传资料 赚现金
    江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类
    立即下载
    加入资料篮
    江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类01
    江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类02
    江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类03
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类

    展开
    这是一份江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类,共40页。试卷主要包含了为函数y1、y2的“组合函数”,x+m﹣4,其中m>2,,与y轴交于点C,顶点为D,已知等内容,欢迎下载使用。

    江苏省2022中考数学真题分类汇编-07 解答题 提升题知识点分类
    一.一次函数综合题(共1小题)
    1.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
    (1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
    (2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.
    ①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;
    ②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
    二.二次函数综合题(共6小题)
    2.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.
    (1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;
    (2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
    (3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.

    3.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
    (1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
    (2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
    (3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.

    4.(2022•泰州)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=(x>0)的图象相交于点B(3,1).
    (1)求这两个函数的表达式;
    (2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
    (3)平行于x轴的直线l与函数y1的图象相交于点C、D(点C在点D的左边),与函数y2的图象相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.

    5.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
    x

    ﹣1
    0
    1
    2
    3

    y

    4
    3
    0
    ﹣5
    ﹣12

    (1)求二次函数y=ax2+bx+3的表达式;
    (2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y=   ,实数k的取值范围是    ;
    (3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
    6.(2022•苏州)如图,二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.
    (1)求A,B,C三点的坐标(用数字或含m的式子表示),并求∠OBC的度数;
    (2)若∠ACO=∠CBD,求m的值;
    (3)若在第四象限内二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象上,始终存在一点P,使得∠ACP=75°,请结合函数的图象,直接写出m的取值范围.

    7.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.
    (1)求二次函数的表达式;
    (2)①求证:△OCD∽△A′BD;
    ②求的最小值;
    (3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.

    三.三角形综合题(共3小题)
    8.(2022•苏州)(1)如图1,在△ABC中,∠ACB=2∠B,CD平分∠ACB,交AB于点D,DE∥AC,交BC于点E.
    ①若DE=1,BD=,求BC的长;
    ②试探究﹣是否为定值.如果是,请求出这个定值;如果不是,请说明理由.
    (2)如图2,∠CBG和∠BCF是△ABC的2个外角,∠BCF=2∠CBG,CD平分∠BCF,交AB的延长线于点D,DE∥AC,交CB的延长线于点E.记△ACD的面积为S1,△CDE的面积为S2,△BDE的面积为S3.若S1•S3=S22,求cos∠CBD的值.


    9.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.
    (1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;
    ①点E在线段AB的延长线上且BE=BD;
    ②点E在线段AB上且EB=ED.
    (2)若AB=6.
    ①当=时,求AE的长;
    ②直接写出运动过程中线段AE长度的最小值.


    10.(2022•泰州)已知:△ABC中,D为BC边上的一点.
    (1)如图①,过点D作DE∥AB交AC边于点E.若AB=5,BD=9,DC=6,求DE的长;
    (2)在图②中,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
    (3)如图③,点F在AC边上,连接BF、DF.若∠DFA=∠A,△FBC的面积等于CD•AB,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.


    四.圆的综合题(共3小题)
    11.(2022•苏州)如图,AB是⊙O的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且CF=EF.
    (1)求证:CF为⊙O的切线;
    (2)连接BD,取BD的中点G,连接AG.若CF=4,BF=2,求AG的长.


    12.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.
    【操作探究】
    在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:
    解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.
    在Rt△ABC中,tan∠BAC=,
    在Rt△CDE中,   ,
    所以tan∠BAC=tan∠DCE.
    所以∠BAC=∠DCE.
    因为∠ACP+∠DCE=∠ACB=90°,
    所以∠ACP+∠BAC=90°,
    所以∠APC=90°,
    即AB⊥CD.

    【拓展应用】
    (1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;
    (2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.

    13.(2022•常州)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.
    (1)沿AC、BC剪下△ABC,则△ABC是    三角形(填“锐角”、“直角”或“钝角”);
    (2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
    (3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.

    五.几何变换综合题(共1小题)
    14.(2022•连云港)【问题情境】
    在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.
    【问题探究】
    小昕同学将三角板DEB绕点B按顺时针方向旋转.
    (1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.
    (2)若点C、E、D在同一条直线上,求点D到直线BC的距离.

    (3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.
    (4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是    .




    参考答案与试题解析
    一.一次函数综合题(共1小题)
    1.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
    (1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
    (2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.
    ①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;
    ②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
    【解答】解:(1)函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”,理由如下:
    ∵3(x+1)+(2x﹣1)=3x+3+2x﹣1=5x+2,
    ∴y=5x+2=3(x+1)+(2x﹣1),
    ∴函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;
    (2)①由得,
    ∴P(2p+1,p﹣1),
    ∵y1、y2的“组合函数”为y=m(x﹣p﹣2)+n(﹣x+3p),
    ∴x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),
    ∵点P在函数y1、y2的“组合函数”图象的上方,
    ∴p﹣1>(p﹣1)(m+n),
    ∴(p﹣1)(1﹣m﹣n)>0,
    ∵m+n>1,
    ∴1﹣m﹣n<0,
    ∴p﹣1<0,
    ∴p<1;
    ②存在m=时,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变,Q(3,0),理由如下:
    由①知,P(2p+1,p﹣1),
    ∵函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,
    ∴p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),
    ∴(p﹣1)(1﹣m﹣n)=0,
    ∵p≠1,
    ∴1﹣m﹣n=0,有n=1﹣m,
    ∴y=m(x﹣p﹣2)+n(﹣x+3p)=m(x﹣p﹣2)+(1﹣m)(﹣x+3p)=(2m﹣1)x+3p﹣(4p+2)m,
    令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,
    变形整理得:(3﹣4m)p+(2m﹣1)x﹣2m=0,
    ∴当3﹣4m=0,即m=时,x﹣=0,
    ∴x=3,
    ∴m=时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).
    二.二次函数综合题(共6小题)
    2.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.
    (1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;
    (2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
    (3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.

    【解答】(1)解:把O(0,0)代入y=x2+(m﹣2)x+m﹣4得:
    m﹣4=0,
    解得m=4,
    ∴y=x2+2x=(x+1)2﹣1,
    ∴函数图像的顶点A的坐标为(﹣1,﹣1);
    (2)证明:由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),
    ∵m>2,
    ∴2﹣m<0,
    ∴<0,
    ∵=﹣(m﹣4)2﹣1≤﹣1<0,
    ∴二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
    (3)解:设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),
    当x=0时,B(0,c),
    将(﹣,)代入y=﹣x﹣2得:
    =﹣2,
    ∴c=,
    ∵B(0,c)在y轴的负半轴,
    ∴c<0,
    ∴OB=﹣c=﹣,
    过点A作AH⊥OB于H,如图:

    ∵A(﹣1,﹣1),
    ∴AH=1,
    在△AOB中,
    S△AOB=OB•AH=×(﹣)×1=﹣b2﹣b+1=﹣(b+1)2+,
    ∵﹣<0,
    ∴当b=﹣1时,此时c<0,S△AOB取最大值,最大值为,
    答:△AOB面积的最大值是.
    3.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
    (1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
    (2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
    (3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.

    【解答】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),

    设抛物线的解析式为:y=ax2+8,
    把B(4,0)代入得:0=16a+8,
    ∴a=﹣,
    ∴抛物线的解析式为:y=﹣x2+8,
    ∵四边形EFGH是正方形,
    ∴GH=FG=2OG,
    设H(t,﹣t2+8)(t>0),
    ∴﹣t2+8=2t,
    解得:t1=﹣2+2,t2=﹣2﹣2(舍),
    ∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;
    (2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),

    ∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,
    ∵﹣1<0,
    ∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;
    (3)若切割成圆,能切得半径为3dm的圆,理由如下:
    如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,
    则MN=OM=3,NQ⊥MN,

    设N(m,﹣m2+8),
    由勾股定理得:PM2+PN2=MN2,
    ∴m2+(﹣m2+8﹣3)2=32,
    解得:m1=2,m2=﹣2(舍),
    ∴N(2,4),
    ∴PM=4﹣1=3,
    ∵cos∠NMP===,
    ∴MQ=3MN=9,
    ∴Q(0,12),
    设QN的解析式为:y=kx+b,
    ∴,
    ∴,
    ∴QN的解析式为:y=﹣2x+12,
    ﹣x2+8=﹣2x+12,
    x2﹣2x+4=0,
    Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,
    ∴若切割成圆,能切得半径为3dm的圆.
    4.(2022•泰州)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=(x>0)的图象相交于点B(3,1).
    (1)求这两个函数的表达式;
    (2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
    (3)平行于x轴的直线l与函数y1的图象相交于点C、D(点C在点D的左边),与函数y2的图象相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.

    【解答】解:(1)∵二次函数y1=x2+mx+1的图像与y轴相交于点A,与反比例函数y2=(x>0)的图像相交于点B(3,1),
    ∴32+3m+1=1,=1,
    解得m=﹣3,k=3,
    ∴二次函数的解析式为y1=x2﹣3x+1,反比例函数的解析式为y2=(x>0);
    (2)∵二次函数的解析式为y1=x2﹣3x+1,
    ∴对称轴为直线x=,
    由图象知,当y1随x的增大而增大且y1<y2时,≤x<3;
    (3)由题意作图如下:

    ∵当x=0时,y1=1,
    ∴A(0,1),
    ∵B(3,1),
    ∴△ACE的CE边上的高与△BDE的DE边上的高相等,
    ∵△ACE与△BDE的面积相等,
    ∴CE=DE,
    即E点是二次函数的对称轴与反比例函数的交点,
    当x=时,y2=2,
    ∴E(,2).
    5.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
    x

    ﹣1
    0
    1
    2
    3

    y

    4
    3
    0
    ﹣5
    ﹣12

    (1)求二次函数y=ax2+bx+3的表达式;
    (2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= y=﹣x2+6x﹣5(答案不唯一) ,实数k的取值范围是  4≤k≤5 ;
    (3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
    【解答】解:(1)将(﹣1,4),(1,0)代入y=ax2+bx+3得:

    解得,
    ∴二次函数的表达式为y=﹣x2﹣2x+3;
    (2)如图:

    ∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
    ∴将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,
    ∴新图象的对称轴为直线x=k﹣1,
    ∵当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,
    ∴3≤k﹣1≤4,
    解得4≤k≤5,
    ∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=﹣(x﹣3)2+4=﹣x2+6x﹣5,
    故答案为:y=﹣x2+6x﹣5(答案不唯一),4≤k≤5;
    (3)当B在C左侧时,过B作BH⊥AC于H,如图:

    ∵点A、B的横坐标分别是m、m+1,
    ∴yA=﹣m2﹣2m+3,yB=﹣(m+1)2﹣2(m+1)+3=﹣m2﹣4m,
    ∴A(m,﹣m2﹣2m+3),B(m+1,﹣m2﹣m),
    ∵点C与点A关于该函数图像的对称轴对称,而抛物线对称轴为直线x=﹣1,
    ∴=﹣1,AC∥x轴,
    ∴xC=﹣2﹣m,
    ∴C(﹣2﹣m,﹣m2﹣2m+3),
    过B作BH⊥AC于H,
    ∴BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m﹣3|,
    ∴BH=CH,
    ∴△BHC是等腰直角三角形,
    ∴∠HCB=45°,即∠ACB=45°,
    当B在C右侧时,如图:

    同理可得△BHC是等腰直角三角形,
    ∴∠ACB=180°﹣∠BCH=135°,
    综上所述,∠ACB的度数是45°或135°.
    6.(2022•苏州)如图,二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.
    (1)求A,B,C三点的坐标(用数字或含m的式子表示),并求∠OBC的度数;
    (2)若∠ACO=∠CBD,求m的值;
    (3)若在第四象限内二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象上,始终存在一点P,使得∠ACP=75°,请结合函数的图象,直接写出m的取值范围.

    【解答】解:(1)当y=0时,﹣x2+2mx+2m+1=0,
    解方程,得x1=﹣1,x2=2m+1,
    ∵点A在点B的左侧,且m>0,
    ∴A(﹣1,0),B(2m+1,0),
    当x=0时,y=2m+1,
    ∴C(0,2m+1),
    ∴OB=OC=2m+1,
    ∵∠BOC=90°,
    ∴∠OBC=45°;

    (2)如图1中,连接AE.

    ∵y=﹣x2+2mx+2m+1=﹣(x﹣m)2+(m+1)2,
    ∴D(m,(m+1)2),F(m,0),
    ∴DF=(m+1)2,OF=m,BF=m+1,
    ∵A,B关于对称轴对称,
    ∴AE=BE,
    ∴∠EAB=∠OBC=45°,
    ∵∠ACO=∠CBD,∠OCB=∠OBC,
    ∴∠ACO+∠OCB=∠CBD+∠OBC,即∠ACE=∠DBF,
    ∵EF∥OC,
    ∴tan∠ACE====m+1,
    ∴=m+1,
    ∴m=1或﹣1,
    ∵m>0,
    ∴m=1;

    (3)如图,设PC交x轴于点Q.

    当点P在第四象限时,点Q总是在点B的左侧,此时∠CQA>∠CBA,即∠CQA>45°,
    ∵∠ACQ=75°,
    ∴∠CAO<60°,
    ∴2m+1<,
    ∴m<,
    ∴0<m<.
    7.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.
    (1)求二次函数的表达式;
    (2)①求证:△OCD∽△A′BD;
    ②求的最小值;
    (3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.

    【解答】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,
    ∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;
    (2)①证明:如图1,

    由翻折得:∠OAC=∠A',
    由对称得:OC=AC,
    ∴∠AOC=∠OAC,
    ∴∠COA=∠A',
    ∵∠A'DB=∠ODC,
    ∴△OCD∽△A′BD;
    ②解:∵△OCD∽△A′BD,
    ∴=,
    ∵AB=A'B,
    ∴=,
    ∴的最小值就是的最小值,
    y=x2﹣2x=(x﹣2)2﹣2,
    ∴C(2,﹣2),
    ∴OC=2,
    ∴当CD⊥OA时,CD最小,的值最小,
    当CD=2时,的最小值为=;
    (3)解:∵S△OCD=8S△A'BD,
    ∴S△OCD:S△A'BD=8,
    ∵△OCD∽△A′BD,
    ∴=()2=8,
    ∴=2,
    ∵OC=2,
    ∴A'B=AB=1,
    ∴BF=2﹣1=1,
    如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,设抛物线的对称轴与x轴交于点F,

    由翻折得:AA'⊥CH,
    ∵∠AHB=∠BFC=90°,∠ABH=∠CBD,
    ∴∠BCF=∠BAH,
    tan∠BCF=tan∠GAA',
    ∴==,
    设A'G=a,则AG=2a,BG=2a﹣1,
    在Rt△A'GB中,由勾股定理得:BG2+A'G2=A'B2,
    ∴a2+(2a﹣1)2=12,
    ∴a1=0(舍),a2=,
    ∴BG=2a﹣1=﹣1=,
    ∵A'G∥OQ,
    ∴△A'GB∽△QOB,
    ∴=,即=,
    ∴OQ=4,
    ∴Q(0,4),
    设直线A'B的解析式为:y=kx+m,
    ∴,
    解得:,
    ∴直线A'B的解析式为:y=﹣x+4,
    ∴﹣x+4=x2﹣2x,
    3x2﹣4x﹣24=0,
    解得:x=,
    ∴直线A′B与二次函数的交点横坐标是.
    三.三角形综合题(共3小题)
    8.(2022•苏州)(1)如图1,在△ABC中,∠ACB=2∠B,CD平分∠ACB,交AB于点D,DE∥AC,交BC于点E.
    ①若DE=1,BD=,求BC的长;
    ②试探究﹣是否为定值.如果是,请求出这个定值;如果不是,请说明理由.
    (2)如图2,∠CBG和∠BCF是△ABC的2个外角,∠BCF=2∠CBG,CD平分∠BCF,交AB的延长线于点D,DE∥AC,交CB的延长线于点E.记△ACD的面积为S1,△CDE的面积为S2,△BDE的面积为S3.若S1•S3=S22,求cos∠CBD的值.


    【解答】解:(1)①∵CD平分∠ACB,
    ∴∠ACD=∠DCB=∠ACB,
    ∵∠ACB=2∠B,
    ∴∠ACD=∠DCB=∠B,
    ∴CD=BD=,
    ∵DE∥AC,
    ∴∠ACD=∠EDC,
    ∴∠EDC=∠DCB=∠B,
    ∴CE=DE=1,
    ∴△CED∽△CDB,
    ∴,
    ∴,
    ∴BC=;
    ②∵DE∥AC,
    ∴,
    同①可得,CE=DE,
    ∴,
    ∴=1,
    ∴﹣是定值,定值为1;
    (2)∵DE∥AC,
    ∴,
    ∵,
    ∴,
    又∵S1•S3=S22,
    ∴,
    设BC=9x,则CE=16x,
    ∵CD平分∠BCF,
    ∴∠ECD=∠FCD=∠BCF,
    ∵∠BCF=2∠CBG,
    ∴∠ECD=∠FCD=∠CBD,
    ∴BD=CD,
    ∵DE∥AC,
    ∴∠EDC=∠FCD,
    ∴∠EDC=∠CBD=∠ECD,
    ∴CE=DE,
    ∵∠DCB=∠ECD,
    ∴△CDB∽△CED,
    ∴,
    ∴CD2=CB•CE=144x2,
    ∴CD=12x,
    过点D作DH⊥BC于点H,

    ∵BD=CD=12x,
    ∴BH=BC=x,
    ∴cos.
    9.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.
    (1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;
    ①点E在线段AB的延长线上且BE=BD;
    ②点E在线段AB上且EB=ED.
    (2)若AB=6.
    ①当=时,求AE的长;
    ②直接写出运动过程中线段AE长度的最小值.


    【解答】解:(1)①AE=2BE,理由如下:
    ∵DE⊥AD,
    ∴∠AED+∠EAD=90°=∠ADE=∠BDE+∠BDA,
    ∵BE=BD,
    ∴∠AED=∠BDE,
    ∴∠EAD=∠BDA,
    ∴AB=BD,
    ∴BE=BD=AB,
    ∴AE=2BE;
    ②AE=2EB,理由如下:
    如图:

    ∵∠BAC=90°,∠C=60°,
    ∴∠B=30°,
    ∵EB=ED,
    ∴∠EDB=∠B=30°,
    ∴∠AED=∠EDB+∠B=60°,
    ∵DE⊥AD,
    ∴∠EDA=90°,∠EAD=30°,
    ∴AE=2ED,
    ∴AE=2EB;
    (2)①过D作DF⊥AB于F,如图:

    ∵∠FAD=∠DAE,∠AFD=90°=∠ADE,
    ∴△AFD∽△ADE,
    ∴=,即=,
    ∵=,
    ∴=,
    设DF=m,则AF=2m,
    在Rt△BDF中,BF=DF=3m,
    ∵AB=6,
    ∴BF+AF=6,即3m+2m=6,
    ∴m=,
    ∴AF=,DF=,
    ∴AD==,
    ∵△AFD∽△ADE,
    ∴=,即=,
    ∴AE=;
    ②作AE的中点G,连接DG,如图:

    ∵∠ADE=90°,DG是斜边上的中线,
    ∴AE=2DG,DG=AG=EG,
    当AE最小时,DG最小,此时DG⊥BC,
    ∵∠B=30°,
    ∴BG=2DG,
    ∴AE=2DG=BG,
    ∴BE=AG,
    ∴AG=EG=BE,
    ∴此时AE=AB=4,
    答:线段AE长度的最小值为4,
    法2:
    过A做AG⊥BC于G,过E做EH⊥BC于H,如图:

    ∵∠ADE=90°,
    ∴∠EDH=90°﹣∠ADG=∠DAG,
    ∵∠EHD=∠AGD=90°,
    ∴=,
    ∴AG•EH=DH•DG,
    ∵∠BAC=90°,∠C=60°,
    ∴∠B=30°,
    ∴AG=AB=3,EH=BE=(6﹣AE),
    ∴DH•DG=3EH,
    ∴AE2=AD2+DE2=AG2+DG2+DH2+EH2=9+DG2+DH2+EH2,
    ∵DG2+DH2≥2DH•DG,
    ∴AE2≥9+2DH•DG+EH2,即AE2≥9+6EH+EH2,
    ∴AE2≥(3+EH)2,
    ∵AE>0,EH>0,
    ∴AE≥3+EH,
    ∵EH=(6﹣AE),
    ∴AE≥3+(6﹣AE),
    ∴AE≥4.
    答:线段AE长度的最小值为4,
    10.(2022•泰州)已知:△ABC中,D为BC边上的一点.
    (1)如图①,过点D作DE∥AB交AC边于点E.若AB=5,BD=9,DC=6,求DE的长;
    (2)在图②中,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
    (3)如图③,点F在AC边上,连接BF、DF.若∠DFA=∠A,△FBC的面积等于CD•AB,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.


    【解答】解:(1)如图①中,∵DE∥AB,
    ∴△CDE∽△CBA,
    ∴=,
    ∴=,
    ∴DE=2;

    (2)如图②中,点F即为所求.


    (3)结论:直线BC与以FD为半径作⊙F相切.
    理由:作BR∥CF交FD的延长线于点R,连接CR.

    ∵AF∥BR,∠A=∠AFR,
    ∴四边形ABRF是等腰梯形,
    ∴AB=FR,
    ∵CF∥BR,
    ∴S△CFB=S△CFR=•AB•CD=•FR•CD,
    ∴CD⊥DF,
    ∴直线BC与以FD为半径作⊙F相切.
    四.圆的综合题(共3小题)
    11.(2022•苏州)如图,AB是⊙O的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且CF=EF.
    (1)求证:CF为⊙O的切线;
    (2)连接BD,取BD的中点G,连接AG.若CF=4,BF=2,求AG的长.


    【解答】(1)证明:如图,连接OC,OD.
    ∵OC=OD,
    ∴∠OCD=∠ODC,
    ∵FC=FE,
    ∴∠FCE=∠FEC,
    ∵∠OED=∠FEC,
    ∴∠OED=∠FCE,
    ∵AB是直径,D是的中点,
    ∴∠DOE=90°,
    ∴∠OED+∠ODC=90°,
    ∴∠FCE+∠OCD=90°,即∠OCF=90°,
    ∵OD是半径,
    ∴CF是⊙O的切线.

    (2)解:过点G作GH⊥AB于点H.
    设OA=OD=OC=OB=r,则OF=r+2,
    在Rt△COF中,42+r2=(r+2)2,
    ∴r=3,
    ∵GH⊥AB,
    ∴∠GHB=90°,
    ∵∠DOE=90°,
    ∴∠GHB=∠DOE,
    ∴GH∥DO,
    ∴=,
    ∵G为BD的中点,
    ∴BG=BD,
    ∴BH=BO=,GH=OD=,
    ∴AH=AB﹣BH=6﹣=,
    ∴AG===.

    12.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.
    【操作探究】
    在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:
    解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.
    在Rt△ABC中,tan∠BAC=,
    在Rt△CDE中, tan∠DCE= ,
    所以tan∠BAC=tan∠DCE.
    所以∠BAC=∠DCE.
    因为∠ACP+∠DCE=∠ACB=90°,
    所以∠ACP+∠BAC=90°,
    所以∠APC=90°,
    即AB⊥CD.

    【拓展应用】
    (1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;
    (2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.

    【解答】解:【操作探究】在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.
    在Rt△ABC中,tan∠BAC=,
    在Rt△CDE中,tan∠DCE=,
    所以tan∠BAC=tan∠DCE.
    所以∠BAC=∠DCE.
    因为∠ACP+∠DCE=∠ACB=90°,
    所以∠ACP+∠BAC=90°,
    所以∠APC=90°,
    即AB⊥CD.
    故答案为:tan∠DCE=;

    【拓展应用】(1)如图②中,点P即为所求.

    作法:取格点T,连接AT交⊙O于点P,点P即为所求;
    证明:由作图可知,OM⊥AP,OM是半径,
    ∴=;

    (2)如图③中,点P即为所求.

    作法:取格点J,K,连接JK交AB于点P,点P即为所求.
    13.(2022•常州)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.
    (1)沿AC、BC剪下△ABC,则△ABC是  直角 三角形(填“锐角”、“直角”或“钝角”);
    (2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
    (3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.

    【解答】解:(1)∵AB是直径,直径所对的圆周角是直角,
    ∴△ABC是直角三角形,
    故答案为:直角;

    (2)如图,四边形EFHG或四边形EFG′H即为所求.


    (3)小明的猜想正确.
    理由:如图2中,设CM=CA,CN=CB,取AP=BQ=4,

    则∵==,
    ∴MN∥AB,
    ∴==,
    ∴MN=PQ=4,
    ∴四边形MNQP是平行四边形,
    ∵==,
    ∴MP∥CO,
    ∴==,
    ∴PM=4,
    ∴MN=4,
    ∴四边形MNQP是菱形,边长为4,
    ∴小明的猜想正确.
    五.几何变换综合题(共1小题)
    14.(2022•连云港)【问题情境】
    在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.
    【问题探究】
    小昕同学将三角板DEB绕点B按顺时针方向旋转.
    (1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.
    (2)若点C、E、D在同一条直线上,求点D到直线BC的距离.

    (3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.
    (4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是   .



    【解答】解:(1)由题意得,∠BEF=∠BED=90°,
    在Rt△BEF中,∠ABC=30°,BE=3,
    ∴BF===2;

    (2)①当点E在BC上方时,
    如图1,过点D作DH⊥BC于H,
    在Rt△ABC中,AC=3,
    ∴tan∠ABC=,
    ∴BC===3,
    在Rt△BED中,∠EBD=∠ABC=30°,BE=3,
    ∴DE=BE•tan∠DBE=,
    ∵S△BCD=CD•BE=BC•DH,
    ∴DH==+1,

    ②当点E在BC下方时,如图2,
    在Rt△BCE中,BE=3,BC=3,
    根据勾股定理得,CE==3,
    ∴CD=CE﹣DE=3﹣,
    过点D作DM⊥BC于M,
    ∵S△BDC=BC•DM=CD•BE,
    ∴DM==﹣1,
    即点D到直线BC的距离为±1;

    (3)如图3﹣1,连接CD,取CD的中点G,

    取BC的中点O,连接GO,则OG∥AB,
    ∴∠COG=∠B=30°,
    ∴∠BOE=150°,
    ∵点G为CD的中点,点O为BC的中点,
    ∴GO=BD=,
    ∴点G是以点O为圆心,为半径的圆上,如图3﹣2,
    ∴三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上时,点G所经过的轨迹为150°所对的圆弧,
    ∴点G所经过的路径长为=π;

    (4)如图4,过点O作OK⊥AB于K,
    ∵点O为BC的中点,BC=3,
    ∴OB=,
    ∴OK=OB•sin30°=,
    由(3)知,点G是以点O为圆心,为半径的圆上,
    ∴点G到直线AB的距离的最大值是+=,
    故答案为:.



    相关试卷

    江苏省各地市2023年中考数学真题分类汇编-03解答题提升题知识点分类: 这是一份江苏省各地市2023年中考数学真题分类汇编-03解答题提升题知识点分类,共30页。试卷主要包含了计算,解方程组;等内容,欢迎下载使用。

    江苏省苏州市5年(2018-2022)中考数学真题分类汇编-08解答题(提升题)知识点分类: 这是一份江苏省苏州市5年(2018-2022)中考数学真题分类汇编-08解答题(提升题)知识点分类,共19页。试卷主要包含了解不等式组,如图,一次函数y=kx+2等内容,欢迎下载使用。

    江苏省2022中考数学真题分类汇编-06+解答题+中档题知识点分类: 这是一份江苏省2022中考数学真题分类汇编-06+解答题+中档题知识点分类,共33页。试卷主要包含了,点Q的纵坐标为﹣2,,且∠CAD=90°等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map