江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类
展开江苏省2022中考数学真题分类汇编-07 解答题 提升题知识点分类
一.一次函数综合题(共1小题)
1.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.
①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;
②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
二.二次函数综合题(共6小题)
2.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.
(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;
(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.
3.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.
4.(2022•泰州)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=(x>0)的图象相交于点B(3,1).
(1)求这两个函数的表达式;
(2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
(3)平行于x轴的直线l与函数y1的图象相交于点C、D(点C在点D的左边),与函数y2的图象相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.
5.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
x
…
﹣1
0
1
2
3
…
y
…
4
3
0
﹣5
﹣12
…
(1)求二次函数y=ax2+bx+3的表达式;
(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= ,实数k的取值范围是 ;
(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
6.(2022•苏州)如图,二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.
(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求∠OBC的度数;
(2)若∠ACO=∠CBD,求m的值;
(3)若在第四象限内二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象上,始终存在一点P,使得∠ACP=75°,请结合函数的图象,直接写出m的取值范围.
7.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.
(1)求二次函数的表达式;
(2)①求证:△OCD∽△A′BD;
②求的最小值;
(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.
三.三角形综合题(共3小题)
8.(2022•苏州)(1)如图1,在△ABC中,∠ACB=2∠B,CD平分∠ACB,交AB于点D,DE∥AC,交BC于点E.
①若DE=1,BD=,求BC的长;
②试探究﹣是否为定值.如果是,请求出这个定值;如果不是,请说明理由.
(2)如图2,∠CBG和∠BCF是△ABC的2个外角,∠BCF=2∠CBG,CD平分∠BCF,交AB的延长线于点D,DE∥AC,交CB的延长线于点E.记△ACD的面积为S1,△CDE的面积为S2,△BDE的面积为S3.若S1•S3=S22,求cos∠CBD的值.
9.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.
(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;
①点E在线段AB的延长线上且BE=BD;
②点E在线段AB上且EB=ED.
(2)若AB=6.
①当=时,求AE的长;
②直接写出运动过程中线段AE长度的最小值.
10.(2022•泰州)已知:△ABC中,D为BC边上的一点.
(1)如图①,过点D作DE∥AB交AC边于点E.若AB=5,BD=9,DC=6,求DE的长;
(2)在图②中,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
(3)如图③,点F在AC边上,连接BF、DF.若∠DFA=∠A,△FBC的面积等于CD•AB,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.
四.圆的综合题(共3小题)
11.(2022•苏州)如图,AB是⊙O的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且CF=EF.
(1)求证:CF为⊙O的切线;
(2)连接BD,取BD的中点G,连接AG.若CF=4,BF=2,求AG的长.
12.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.
【操作探究】
在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:
解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.
在Rt△ABC中,tan∠BAC=,
在Rt△CDE中, ,
所以tan∠BAC=tan∠DCE.
所以∠BAC=∠DCE.
因为∠ACP+∠DCE=∠ACB=90°,
所以∠ACP+∠BAC=90°,
所以∠APC=90°,
即AB⊥CD.
【拓展应用】
(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;
(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.
13.(2022•常州)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.
(1)沿AC、BC剪下△ABC,则△ABC是 三角形(填“锐角”、“直角”或“钝角”);
(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.
五.几何变换综合题(共1小题)
14.(2022•连云港)【问题情境】
在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.
【问题探究】
小昕同学将三角板DEB绕点B按顺时针方向旋转.
(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.
(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.
(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.
(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是 .
参考答案与试题解析
一.一次函数综合题(共1小题)
1.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.
(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;
(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.
①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;
②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.
【解答】解:(1)函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”,理由如下:
∵3(x+1)+(2x﹣1)=3x+3+2x﹣1=5x+2,
∴y=5x+2=3(x+1)+(2x﹣1),
∴函数y=5x+2是函数y1=x+1、y2=2x﹣1的“组合函数”;
(2)①由得,
∴P(2p+1,p﹣1),
∵y1、y2的“组合函数”为y=m(x﹣p﹣2)+n(﹣x+3p),
∴x=2p+1时,y=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p)=(p﹣1)(m+n),
∵点P在函数y1、y2的“组合函数”图象的上方,
∴p﹣1>(p﹣1)(m+n),
∴(p﹣1)(1﹣m﹣n)>0,
∵m+n>1,
∴1﹣m﹣n<0,
∴p﹣1<0,
∴p<1;
②存在m=时,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变,Q(3,0),理由如下:
由①知,P(2p+1,p﹣1),
∵函数y1、y2的“组合函数”y=m(x﹣p﹣2)+n(﹣x+3p)图象经过点P,
∴p﹣1=m(2p+1﹣p﹣2)+n(﹣2p﹣1+3p),
∴(p﹣1)(1﹣m﹣n)=0,
∵p≠1,
∴1﹣m﹣n=0,有n=1﹣m,
∴y=m(x﹣p﹣2)+n(﹣x+3p)=m(x﹣p﹣2)+(1﹣m)(﹣x+3p)=(2m﹣1)x+3p﹣(4p+2)m,
令y=0得(2m﹣1)x+3p﹣(4p+2)m=0,
变形整理得:(3﹣4m)p+(2m﹣1)x﹣2m=0,
∴当3﹣4m=0,即m=时,x﹣=0,
∴x=3,
∴m=时,“组合函数”图象与x轴交点Q的位置不变,Q(3,0).
二.二次函数综合题(共6小题)
2.(2022•连云港)已知二次函数y=x2+(m﹣2)x+m﹣4,其中m>2.
(1)当该函数的图象经过原点O(0,0),求此时函数图象的顶点A的坐标;
(2)求证:二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图象,使其顶点在直线y=﹣x﹣2上运动,平移后所得函数的图象与y轴的负半轴的交点为B,求△AOB面积的最大值.
【解答】(1)解:把O(0,0)代入y=x2+(m﹣2)x+m﹣4得:
m﹣4=0,
解得m=4,
∴y=x2+2x=(x+1)2﹣1,
∴函数图像的顶点A的坐标为(﹣1,﹣1);
(2)证明:由抛物线顶点坐标公式得y=x2+(m﹣2)x+m﹣4的顶点为(,),
∵m>2,
∴2﹣m<0,
∴<0,
∵=﹣(m﹣4)2﹣1≤﹣1<0,
∴二次函数y=x2+(m﹣2)x+m﹣4的顶点在第三象限;
(3)解:设平移后图像对应的二次函数表达式为y=x2+bx+c,其顶点为(﹣,),
当x=0时,B(0,c),
将(﹣,)代入y=﹣x﹣2得:
=﹣2,
∴c=,
∵B(0,c)在y轴的负半轴,
∴c<0,
∴OB=﹣c=﹣,
过点A作AH⊥OB于H,如图:
∵A(﹣1,﹣1),
∴AH=1,
在△AOB中,
S△AOB=OB•AH=×(﹣)×1=﹣b2﹣b+1=﹣(b+1)2+,
∵﹣<0,
∴当b=﹣1时,此时c<0,S△AOB取最大值,最大值为,
答:△AOB面积的最大值是.
3.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:
(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;
(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;
(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.
【解答】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),
设抛物线的解析式为:y=ax2+8,
把B(4,0)代入得:0=16a+8,
∴a=﹣,
∴抛物线的解析式为:y=﹣x2+8,
∵四边形EFGH是正方形,
∴GH=FG=2OG,
设H(t,﹣t2+8)(t>0),
∴﹣t2+8=2t,
解得:t1=﹣2+2,t2=﹣2﹣2(舍),
∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;
(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),
∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,
∵﹣1<0,
∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;
(3)若切割成圆,能切得半径为3dm的圆,理由如下:
如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,
则MN=OM=3,NQ⊥MN,
设N(m,﹣m2+8),
由勾股定理得:PM2+PN2=MN2,
∴m2+(﹣m2+8﹣3)2=32,
解得:m1=2,m2=﹣2(舍),
∴N(2,4),
∴PM=4﹣1=3,
∵cos∠NMP===,
∴MQ=3MN=9,
∴Q(0,12),
设QN的解析式为:y=kx+b,
∴,
∴,
∴QN的解析式为:y=﹣2x+12,
﹣x2+8=﹣2x+12,
x2﹣2x+4=0,
Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,
∴若切割成圆,能切得半径为3dm的圆.
4.(2022•泰州)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=(x>0)的图象相交于点B(3,1).
(1)求这两个函数的表达式;
(2)当y1随x的增大而增大且y1<y2时,直接写出x的取值范围;
(3)平行于x轴的直线l与函数y1的图象相交于点C、D(点C在点D的左边),与函数y2的图象相交于点E.若△ACE与△BDE的面积相等,求点E的坐标.
【解答】解:(1)∵二次函数y1=x2+mx+1的图像与y轴相交于点A,与反比例函数y2=(x>0)的图像相交于点B(3,1),
∴32+3m+1=1,=1,
解得m=﹣3,k=3,
∴二次函数的解析式为y1=x2﹣3x+1,反比例函数的解析式为y2=(x>0);
(2)∵二次函数的解析式为y1=x2﹣3x+1,
∴对称轴为直线x=,
由图象知,当y1随x的增大而增大且y1<y2时,≤x<3;
(3)由题意作图如下:
∵当x=0时,y1=1,
∴A(0,1),
∵B(3,1),
∴△ACE的CE边上的高与△BDE的DE边上的高相等,
∵△ACE与△BDE的面积相等,
∴CE=DE,
即E点是二次函数的对称轴与反比例函数的交点,
当x=时,y2=2,
∴E(,2).
5.(2022•常州)已知二次函数y=ax2+bx+3的自变量x的部分取值和对应函数值y如下表:
x
…
﹣1
0
1
2
3
…
y
…
4
3
0
﹣5
﹣12
…
(1)求二次函数y=ax2+bx+3的表达式;
(2)将二次函数y=ax2+bx+3的图像向右平移k(k>0)个单位,得到二次函数y=mx2+nx+q的图像,使得当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小.请写出一个符合条件的二次函数y=mx2+nx+q的表达式y= y=﹣x2+6x﹣5(答案不唯一) ,实数k的取值范围是 4≤k≤5 ;
(3)A、B、C是二次函数y=ax2+bx+3的图像上互不重合的三点.已知点A、B的横坐标分别是m、m+1,点C与点A关于该函数图像的对称轴对称,求∠ACB的度数.
【解答】解:(1)将(﹣1,4),(1,0)代入y=ax2+bx+3得:
,
解得,
∴二次函数的表达式为y=﹣x2﹣2x+3;
(2)如图:
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴将二次函数y=﹣x2﹣2x+3的图像向右平移k(k>0)个单位得y=﹣(x﹣k+1)2+4的图象,
∴新图象的对称轴为直线x=k﹣1,
∵当﹣1<x<3时,y随x增大而增大;当4<x<5时,y随x增大而减小,且抛物线开口向下,
∴3≤k﹣1≤4,
解得4≤k≤5,
∴符合条件的二次函数y=mx2+nx+q的表达式可以是y=﹣(x﹣3)2+4=﹣x2+6x﹣5,
故答案为:y=﹣x2+6x﹣5(答案不唯一),4≤k≤5;
(3)当B在C左侧时,过B作BH⊥AC于H,如图:
∵点A、B的横坐标分别是m、m+1,
∴yA=﹣m2﹣2m+3,yB=﹣(m+1)2﹣2(m+1)+3=﹣m2﹣4m,
∴A(m,﹣m2﹣2m+3),B(m+1,﹣m2﹣m),
∵点C与点A关于该函数图像的对称轴对称,而抛物线对称轴为直线x=﹣1,
∴=﹣1,AC∥x轴,
∴xC=﹣2﹣m,
∴C(﹣2﹣m,﹣m2﹣2m+3),
过B作BH⊥AC于H,
∴BH=|﹣m2﹣4m﹣(﹣m2﹣2m+3)|=|﹣2m﹣3|,CH=|(﹣2﹣m)﹣(m+1)|=|﹣2m﹣3|,
∴BH=CH,
∴△BHC是等腰直角三角形,
∴∠HCB=45°,即∠ACB=45°,
当B在C右侧时,如图:
同理可得△BHC是等腰直角三角形,
∴∠ACB=180°﹣∠BCH=135°,
综上所述,∠ACB的度数是45°或135°.
6.(2022•苏州)如图,二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.
(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求∠OBC的度数;
(2)若∠ACO=∠CBD,求m的值;
(3)若在第四象限内二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象上,始终存在一点P,使得∠ACP=75°,请结合函数的图象,直接写出m的取值范围.
【解答】解:(1)当y=0时,﹣x2+2mx+2m+1=0,
解方程,得x1=﹣1,x2=2m+1,
∵点A在点B的左侧,且m>0,
∴A(﹣1,0),B(2m+1,0),
当x=0时,y=2m+1,
∴C(0,2m+1),
∴OB=OC=2m+1,
∵∠BOC=90°,
∴∠OBC=45°;
(2)如图1中,连接AE.
∵y=﹣x2+2mx+2m+1=﹣(x﹣m)2+(m+1)2,
∴D(m,(m+1)2),F(m,0),
∴DF=(m+1)2,OF=m,BF=m+1,
∵A,B关于对称轴对称,
∴AE=BE,
∴∠EAB=∠OBC=45°,
∵∠ACO=∠CBD,∠OCB=∠OBC,
∴∠ACO+∠OCB=∠CBD+∠OBC,即∠ACE=∠DBF,
∵EF∥OC,
∴tan∠ACE====m+1,
∴=m+1,
∴m=1或﹣1,
∵m>0,
∴m=1;
(3)如图,设PC交x轴于点Q.
当点P在第四象限时,点Q总是在点B的左侧,此时∠CQA>∠CBA,即∠CQA>45°,
∵∠ACQ=75°,
∴∠CAO<60°,
∴2m+1<,
∴m<,
∴0<m<.
7.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.
(1)求二次函数的表达式;
(2)①求证:△OCD∽△A′BD;
②求的最小值;
(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.
【解答】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,
∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;
(2)①证明:如图1,
由翻折得:∠OAC=∠A',
由对称得:OC=AC,
∴∠AOC=∠OAC,
∴∠COA=∠A',
∵∠A'DB=∠ODC,
∴△OCD∽△A′BD;
②解:∵△OCD∽△A′BD,
∴=,
∵AB=A'B,
∴=,
∴的最小值就是的最小值,
y=x2﹣2x=(x﹣2)2﹣2,
∴C(2,﹣2),
∴OC=2,
∴当CD⊥OA时,CD最小,的值最小,
当CD=2时,的最小值为=;
(3)解:∵S△OCD=8S△A'BD,
∴S△OCD:S△A'BD=8,
∵△OCD∽△A′BD,
∴=()2=8,
∴=2,
∵OC=2,
∴A'B=AB=1,
∴BF=2﹣1=1,
如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,设抛物线的对称轴与x轴交于点F,
由翻折得:AA'⊥CH,
∵∠AHB=∠BFC=90°,∠ABH=∠CBD,
∴∠BCF=∠BAH,
tan∠BCF=tan∠GAA',
∴==,
设A'G=a,则AG=2a,BG=2a﹣1,
在Rt△A'GB中,由勾股定理得:BG2+A'G2=A'B2,
∴a2+(2a﹣1)2=12,
∴a1=0(舍),a2=,
∴BG=2a﹣1=﹣1=,
∵A'G∥OQ,
∴△A'GB∽△QOB,
∴=,即=,
∴OQ=4,
∴Q(0,4),
设直线A'B的解析式为:y=kx+m,
∴,
解得:,
∴直线A'B的解析式为:y=﹣x+4,
∴﹣x+4=x2﹣2x,
3x2﹣4x﹣24=0,
解得:x=,
∴直线A′B与二次函数的交点横坐标是.
三.三角形综合题(共3小题)
8.(2022•苏州)(1)如图1,在△ABC中,∠ACB=2∠B,CD平分∠ACB,交AB于点D,DE∥AC,交BC于点E.
①若DE=1,BD=,求BC的长;
②试探究﹣是否为定值.如果是,请求出这个定值;如果不是,请说明理由.
(2)如图2,∠CBG和∠BCF是△ABC的2个外角,∠BCF=2∠CBG,CD平分∠BCF,交AB的延长线于点D,DE∥AC,交CB的延长线于点E.记△ACD的面积为S1,△CDE的面积为S2,△BDE的面积为S3.若S1•S3=S22,求cos∠CBD的值.
【解答】解:(1)①∵CD平分∠ACB,
∴∠ACD=∠DCB=∠ACB,
∵∠ACB=2∠B,
∴∠ACD=∠DCB=∠B,
∴CD=BD=,
∵DE∥AC,
∴∠ACD=∠EDC,
∴∠EDC=∠DCB=∠B,
∴CE=DE=1,
∴△CED∽△CDB,
∴,
∴,
∴BC=;
②∵DE∥AC,
∴,
同①可得,CE=DE,
∴,
∴=1,
∴﹣是定值,定值为1;
(2)∵DE∥AC,
∴,
∵,
∴,
又∵S1•S3=S22,
∴,
设BC=9x,则CE=16x,
∵CD平分∠BCF,
∴∠ECD=∠FCD=∠BCF,
∵∠BCF=2∠CBG,
∴∠ECD=∠FCD=∠CBD,
∴BD=CD,
∵DE∥AC,
∴∠EDC=∠FCD,
∴∠EDC=∠CBD=∠ECD,
∴CE=DE,
∵∠DCB=∠ECD,
∴△CDB∽△CED,
∴,
∴CD2=CB•CE=144x2,
∴CD=12x,
过点D作DH⊥BC于点H,
∵BD=CD=12x,
∴BH=BC=x,
∴cos.
9.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.
(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;
①点E在线段AB的延长线上且BE=BD;
②点E在线段AB上且EB=ED.
(2)若AB=6.
①当=时,求AE的长;
②直接写出运动过程中线段AE长度的最小值.
【解答】解:(1)①AE=2BE,理由如下:
∵DE⊥AD,
∴∠AED+∠EAD=90°=∠ADE=∠BDE+∠BDA,
∵BE=BD,
∴∠AED=∠BDE,
∴∠EAD=∠BDA,
∴AB=BD,
∴BE=BD=AB,
∴AE=2BE;
②AE=2EB,理由如下:
如图:
∵∠BAC=90°,∠C=60°,
∴∠B=30°,
∵EB=ED,
∴∠EDB=∠B=30°,
∴∠AED=∠EDB+∠B=60°,
∵DE⊥AD,
∴∠EDA=90°,∠EAD=30°,
∴AE=2ED,
∴AE=2EB;
(2)①过D作DF⊥AB于F,如图:
∵∠FAD=∠DAE,∠AFD=90°=∠ADE,
∴△AFD∽△ADE,
∴=,即=,
∵=,
∴=,
设DF=m,则AF=2m,
在Rt△BDF中,BF=DF=3m,
∵AB=6,
∴BF+AF=6,即3m+2m=6,
∴m=,
∴AF=,DF=,
∴AD==,
∵△AFD∽△ADE,
∴=,即=,
∴AE=;
②作AE的中点G,连接DG,如图:
∵∠ADE=90°,DG是斜边上的中线,
∴AE=2DG,DG=AG=EG,
当AE最小时,DG最小,此时DG⊥BC,
∵∠B=30°,
∴BG=2DG,
∴AE=2DG=BG,
∴BE=AG,
∴AG=EG=BE,
∴此时AE=AB=4,
答:线段AE长度的最小值为4,
法2:
过A做AG⊥BC于G,过E做EH⊥BC于H,如图:
∵∠ADE=90°,
∴∠EDH=90°﹣∠ADG=∠DAG,
∵∠EHD=∠AGD=90°,
∴=,
∴AG•EH=DH•DG,
∵∠BAC=90°,∠C=60°,
∴∠B=30°,
∴AG=AB=3,EH=BE=(6﹣AE),
∴DH•DG=3EH,
∴AE2=AD2+DE2=AG2+DG2+DH2+EH2=9+DG2+DH2+EH2,
∵DG2+DH2≥2DH•DG,
∴AE2≥9+2DH•DG+EH2,即AE2≥9+6EH+EH2,
∴AE2≥(3+EH)2,
∵AE>0,EH>0,
∴AE≥3+EH,
∵EH=(6﹣AE),
∴AE≥3+(6﹣AE),
∴AE≥4.
答:线段AE长度的最小值为4,
10.(2022•泰州)已知:△ABC中,D为BC边上的一点.
(1)如图①,过点D作DE∥AB交AC边于点E.若AB=5,BD=9,DC=6,求DE的长;
(2)在图②中,用无刻度的直尺和圆规在AC边上作点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)
(3)如图③,点F在AC边上,连接BF、DF.若∠DFA=∠A,△FBC的面积等于CD•AB,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.
【解答】解:(1)如图①中,∵DE∥AB,
∴△CDE∽△CBA,
∴=,
∴=,
∴DE=2;
(2)如图②中,点F即为所求.
(3)结论:直线BC与以FD为半径作⊙F相切.
理由:作BR∥CF交FD的延长线于点R,连接CR.
∵AF∥BR,∠A=∠AFR,
∴四边形ABRF是等腰梯形,
∴AB=FR,
∵CF∥BR,
∴S△CFB=S△CFR=•AB•CD=•FR•CD,
∴CD⊥DF,
∴直线BC与以FD为半径作⊙F相切.
四.圆的综合题(共3小题)
11.(2022•苏州)如图,AB是⊙O的直径,AC是弦,D是的中点,CD与AB交于点E.F是AB延长线上的一点,且CF=EF.
(1)求证:CF为⊙O的切线;
(2)连接BD,取BD的中点G,连接AG.若CF=4,BF=2,求AG的长.
【解答】(1)证明:如图,连接OC,OD.
∵OC=OD,
∴∠OCD=∠ODC,
∵FC=FE,
∴∠FCE=∠FEC,
∵∠OED=∠FEC,
∴∠OED=∠FCE,
∵AB是直径,D是的中点,
∴∠DOE=90°,
∴∠OED+∠ODC=90°,
∴∠FCE+∠OCD=90°,即∠OCF=90°,
∵OD是半径,
∴CF是⊙O的切线.
(2)解:过点G作GH⊥AB于点H.
设OA=OD=OC=OB=r,则OF=r+2,
在Rt△COF中,42+r2=(r+2)2,
∴r=3,
∵GH⊥AB,
∴∠GHB=90°,
∵∠DOE=90°,
∴∠GHB=∠DOE,
∴GH∥DO,
∴=,
∵G为BD的中点,
∴BG=BD,
∴BH=BO=,GH=OD=,
∴AH=AB﹣BH=6﹣=,
∴AG===.
12.(2022•宿迁)如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C、D、M均为格点.
【操作探究】
在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段AB、CD,相交于点P并给出部分说理过程,请你补充完整:
解:在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.
在Rt△ABC中,tan∠BAC=,
在Rt△CDE中, tan∠DCE= ,
所以tan∠BAC=tan∠DCE.
所以∠BAC=∠DCE.
因为∠ACP+∠DCE=∠ACB=90°,
所以∠ACP+∠BAC=90°,
所以∠APC=90°,
即AB⊥CD.
【拓展应用】
(1)如图②是以格点O为圆心,AB为直径的圆,请你只用无刻度的直尺,在上找出一点P,使=,写出作法,并给出证明;
(2)如图③是以格点O为圆心的圆,请你只用无刻度的直尺,在弦AB上找出一点P.使AM2=AP•AB,写出作法,不用证明.
【解答】解:【操作探究】在网格中取格点E,构建两个直角三角形,分别是△ABC和△CDE.
在Rt△ABC中,tan∠BAC=,
在Rt△CDE中,tan∠DCE=,
所以tan∠BAC=tan∠DCE.
所以∠BAC=∠DCE.
因为∠ACP+∠DCE=∠ACB=90°,
所以∠ACP+∠BAC=90°,
所以∠APC=90°,
即AB⊥CD.
故答案为:tan∠DCE=;
【拓展应用】(1)如图②中,点P即为所求.
作法:取格点T,连接AT交⊙O于点P,点P即为所求;
证明:由作图可知,OM⊥AP,OM是半径,
∴=;
(2)如图③中,点P即为所求.
作法:取格点J,K,连接JK交AB于点P,点P即为所求.
13.(2022•常州)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.
(1)沿AC、BC剪下△ABC,则△ABC是 直角 三角形(填“锐角”、“直角”或“钝角”);
(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.
【解答】解:(1)∵AB是直径,直径所对的圆周角是直角,
∴△ABC是直角三角形,
故答案为:直角;
(2)如图,四边形EFHG或四边形EFG′H即为所求.
(3)小明的猜想正确.
理由:如图2中,设CM=CA,CN=CB,取AP=BQ=4,
则∵==,
∴MN∥AB,
∴==,
∴MN=PQ=4,
∴四边形MNQP是平行四边形,
∵==,
∴MP∥CO,
∴==,
∴PM=4,
∴MN=4,
∴四边形MNQP是菱形,边长为4,
∴小明的猜想正确.
五.几何变换综合题(共1小题)
14.(2022•连云港)【问题情境】
在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.
【问题探究】
小昕同学将三角板DEB绕点B按顺时针方向旋转.
(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.
(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.
(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上(如图3),求点G所经过的路径长.
(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是 .
【解答】解:(1)由题意得,∠BEF=∠BED=90°,
在Rt△BEF中,∠ABC=30°,BE=3,
∴BF===2;
(2)①当点E在BC上方时,
如图1,过点D作DH⊥BC于H,
在Rt△ABC中,AC=3,
∴tan∠ABC=,
∴BC===3,
在Rt△BED中,∠EBD=∠ABC=30°,BE=3,
∴DE=BE•tan∠DBE=,
∵S△BCD=CD•BE=BC•DH,
∴DH==+1,
②当点E在BC下方时,如图2,
在Rt△BCE中,BE=3,BC=3,
根据勾股定理得,CE==3,
∴CD=CE﹣DE=3﹣,
过点D作DM⊥BC于M,
∵S△BDC=BC•DM=CD•BE,
∴DM==﹣1,
即点D到直线BC的距离为±1;
(3)如图3﹣1,连接CD,取CD的中点G,
取BC的中点O,连接GO,则OG∥AB,
∴∠COG=∠B=30°,
∴∠BOE=150°,
∵点G为CD的中点,点O为BC的中点,
∴GO=BD=,
∴点G是以点O为圆心,为半径的圆上,如图3﹣2,
∴三角板DEB由初始位置(图1),旋转到点C、B、D首次在同一条直线上时,点G所经过的轨迹为150°所对的圆弧,
∴点G所经过的路径长为=π;
(4)如图4,过点O作OK⊥AB于K,
∵点O为BC的中点,BC=3,
∴OB=,
∴OK=OB•sin30°=,
由(3)知,点G是以点O为圆心,为半径的圆上,
∴点G到直线AB的距离的最大值是+=,
故答案为:.
江苏省各地市2023年中考数学真题分类汇编-03解答题提升题知识点分类: 这是一份江苏省各地市2023年中考数学真题分类汇编-03解答题提升题知识点分类,共30页。试卷主要包含了计算,解方程组;等内容,欢迎下载使用。
江苏省苏州市5年(2018-2022)中考数学真题分类汇编-08解答题(提升题)知识点分类: 这是一份江苏省苏州市5年(2018-2022)中考数学真题分类汇编-08解答题(提升题)知识点分类,共19页。试卷主要包含了解不等式组,如图,一次函数y=kx+2等内容,欢迎下载使用。
江苏省2022中考数学真题分类汇编-06+解答题+中档题知识点分类: 这是一份江苏省2022中考数学真题分类汇编-06+解答题+中档题知识点分类,共33页。试卷主要包含了,点Q的纵坐标为﹣2,,且∠CAD=90°等内容,欢迎下载使用。