搜索
    上传资料 赚现金
    英语朗读宝

    四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类

    四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类第1页
    四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类第2页
    四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类第3页
    还剩35页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类

    展开

    这是一份四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类,共38页。试卷主要包含了﹣1,,其中x是不等式组的整数解,解不等式组,函数图象是研究函数的重要工具,两点等内容,欢迎下载使用。
    四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类
    一.实数的运算(共2小题)
    1.(2021•自贡)计算:﹣|﹣7|+(2﹣)0.
    2.(2020•自贡)计算:|﹣2|﹣(+π)0+(﹣)﹣1.
    二.分式的化简求值(共1小题)
    3.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.
    三.分式方程的应用(共2小题)
    4.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
    5.(2021•自贡)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
    四.解一元一次不等式(共1小题)
    6.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.
    (1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?
    (2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.

    ∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,
    ∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.
    ∴|x+1|+|x﹣2|的最小值是3.
    (3)解决问题:
    ①|x﹣4|+|x+2|的最小值是   ;
    ②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;

    ③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.
    五.解一元一次不等式组(共1小题)
    7.(2022•自贡)解不等式组:,并在数轴上表示其解集.


    六.一次函数与一元一次不等式(共1小题)
    8.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=﹣的图象,并探究其性质.
    列表如下:
    x

    ﹣4
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    4

    y



    a

    0
    b
    ﹣2



    (1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;
    (2)观察函数y=﹣的图象,判断下列关于该函数性质的命题:
    ①当﹣2≤x≤2时,函数图象关于直线y=x对称;
    ②x=2时,函数有最小值,最小值为﹣2;
    ③﹣1<x<1时,函数y的值随x的增大而减小.
    其中正确的是    .(请写出所有正确命题的番号)
    (3)结合图象,请直接写出不等式>x的解集    .

    七.一次函数的应用(共1小题)
    9.(2020•自贡)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.
    (1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;
    (2)新冠疫情期间如何选择这两家商场去购物更省钱?
    八.反比例函数综合题(共1小题)
    10.(2022•自贡)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(m,﹣1)两点.
    (1)求反比例函数和一次函数的解析式;
    (2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C的坐标.

    九.二次函数综合题(共3小题)
    11.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
    (1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
    (2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
    (3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.


    12.(2021•自贡)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.
    (1)直接写出∠OCA的度数和线段AB的长(用a表示);
    (2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为:4,求此抛物线的解析式;
    (3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.

    13.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.
    (1)求抛物线的解析式;
    (2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:
    ①求PD+PC的最小值;
    ②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.

    一十.全等三角形的判定与性质(共1小题)
    14.(2022•自贡)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.

    一十一.矩形的性质(共2小题)
    15.(2022•自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).
    (1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB=AB.我们还可以得到FC=   ,EF=   ;
    (2)进一步观察,我们还会发现EF∥AD,请证明这一结论;
    (3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC之间的距离.

    16.(2021•自贡)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.

    一十二.正方形的性质(共1小题)
    17.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.
    求证:AE=BF.

    一十三.圆的综合题(共2小题)
    18.(2021•自贡)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
    (1)求证:∠DAE=∠DAC;
    (2)求证:DF•AC=AD•DC;
    (3)若sin∠C=,AD=4,求EF的长.

    19.(2020•自贡)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA=PC=AB,连接PO交AC于点D,延长PO交⊙O于点F.
    (1)证明:=;
    (2)若tan∠ABC=2,证明:PA是⊙O的切线;
    (3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.

    一十四.作图—应用与设计作图(共1小题)
    20.(2021•自贡)如图,△ABC的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC的角平分线BD(不写作法,保留作图痕迹).

    一十五.解直角三角形的应用-仰角俯角问题(共2小题)
    21.(2022•自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
    (1)探究原理
    制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.

    (2)实地测量
    如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(≈1.73,结果精确到0.1米)
    (3)拓展探究
    公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).

    22.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)

    一十六.列表法与树状图法(共3小题)
    23.(2022•自贡)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t<3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:

    (1)求参与问卷调查的学生人数n,并将条形统计图补充完整;
    (2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;
    (3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.
    24.(2021•自贡)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.

    (1)本次抽样调查的样本容量是    ,请补全条形统计图;
    (2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
    (3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.
    25.(2020•自贡)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.

    (1)本次调查的学生人数是   人,m=   ;
    (2)请补全条形统计图;
    (3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是   ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是   .

    参考答案与试题解析
    一.实数的运算(共2小题)
    1.(2021•自贡)计算:﹣|﹣7|+(2﹣)0.
    【解答】解:原式=5﹣7+1=﹣1.
    2.(2020•自贡)计算:|﹣2|﹣(+π)0+(﹣)﹣1.
    【解答】解:原式=2﹣1+(﹣6)
    =1+(﹣6)
    =﹣5.
    二.分式的化简求值(共1小题)
    3.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.
    【解答】解:•(+1)


    =,
    由不等式组,得﹣1≤x<1,
    ∵x是不等式组的整数解,
    ∴x=﹣1,0,
    ∵当x=﹣1时,原分式无意义,
    ∴x=0,
    当x=0时,原式==﹣.
    三.分式方程的应用(共2小题)
    4.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
    【解答】解:设张老师骑车的速度为x千米/小时,则汽车的速度为3x千米/小时,
    由题意可得:﹣2=,
    解得x=15,
    经检验,x=15是原分式方程的解,
    答:张老师骑车的速度是15千米/小时.
    5.(2021•自贡)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
    【解答】解:设A型机平均每小时运送快递x件,则B型机平均每小时运送快递(x﹣20)件,
    根据题意得:,
    解得:x=70,
    经检验,x=70是原分式方程的根,且符合题意,
    ∴70﹣20=50,
    答:A型机平均每小时运送快递70件,B型机平均每小时运送快递50件.
    四.解一元一次不等式(共1小题)
    6.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.
    (1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?
    (2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.

    ∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,
    ∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.
    ∴|x+1|+|x﹣2|的最小值是3.
    (3)解决问题:
    ①|x﹣4|+|x+2|的最小值是 6 ;
    ②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;

    ③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.
    【解答】解:(3)解决问题:
    ①|x﹣4|+|x+2|=|x﹣4|+|x﹣(﹣2)|,表示P到A与到B的距离之和,
    点P在线段AB上,PA+PB=6,
    当点P在点A的左侧或点B的右侧时,PA+PB>6,
    ∴|x﹣4|+|x+2|的最小值是6;
    故答案为:6;
    ②如图所示,满足|x+3|+|x﹣1|=|x﹣(﹣3)|+|x﹣1|>4,表示到﹣3和1距离之和大于4的范围,
    当点在﹣3和1之间时,距离之和为4,不满足题意;
    当点在﹣3的左边或1的右边时,距离之和大于4,
    则x范围为x<﹣3或x>1;

    ③当a为﹣1或﹣5时,代数式|x+a|+|x﹣3|的最小值是2.
    五.解一元一次不等式组(共1小题)
    7.(2022•自贡)解不等式组:,并在数轴上表示其解集.


    【解答】解:由不等式3x<6,解得:x<2,
    由不等式5x+4>3x+2,解得:x>﹣1,
    ∴不等式组的解集为:﹣1<x<2,
    ∴在数轴上表示不等式组的解集为:

    六.一次函数与一元一次不等式(共1小题)
    8.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=﹣的图象,并探究其性质.
    列表如下:
    x

    ﹣4
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    4

    y



    a

    0
    b
    ﹣2



    (1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;
    (2)观察函数y=﹣的图象,判断下列关于该函数性质的命题:
    ①当﹣2≤x≤2时,函数图象关于直线y=x对称;
    ②x=2时,函数有最小值,最小值为﹣2;
    ③﹣1<x<1时,函数y的值随x的增大而减小.
    其中正确的是  ②③ .(请写出所有正确命题的番号)
    (3)结合图象,请直接写出不等式>x的解集  x<﹣2或0<x<2 .

    【解答】解:(1)把x=﹣2代入y=﹣得,y=﹣=2,
    把x=1代入y=﹣得,y=﹣=﹣,
    ∴a=2,b=﹣,
    函数y=﹣的图象如图所示:

    (2)观察函数y=﹣的图象,
    ①当﹣2≤x≤2时,函数图象原点对称;错误;
    ②x=2时,函数有最小值,最小值为﹣2;正确;
    ③﹣1<x<1时,函数y的值随x的增大而减小,正确.
    故答案为②③;
    (3)由图象可知,函数y=﹣与直线y=﹣x的交点为(﹣2,2)、(0,0)、(2,﹣2)
    ∴不等式>x的解集为x<﹣2或0<x<2.
    七.一次函数的应用(共1小题)
    9.(2020•自贡)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.
    (1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;
    (2)新冠疫情期间如何选择这两家商场去购物更省钱?
    【解答】解:(1)由题意可得,
    y甲=0.9x,
    当0≤x≤100时,y乙=x,
    当x>100时,y乙=100+(x﹣100)×0.8=0.8x+20,
    由上可得,y乙=;
    (2)当0≤x≤100时,此时选择甲商场购物更省钱;
    当0.9x<0.8x+20时,得x<200,即100<x<200,此时选择甲商场购物更省钱;
    当0.9x=0.8x+20时,得x=200,即此时两家商场购物一样;
    当0.9x>0.8x+20时,得x>200,即此时选择乙商场购物更省钱.
    八.反比例函数综合题(共1小题)
    10.(2022•自贡)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(m,﹣1)两点.
    (1)求反比例函数和一次函数的解析式;
    (2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C的坐标.

    【解答】解:(1)∵A(﹣1,2)在反比例函数y=的图象上,
    ∴n=2×(﹣1)=﹣2,
    ∴其函数解析式为y=﹣;
    ∵B(m,﹣1)在反比例函数的图象上,
    ∴﹣m=﹣2,
    ∴m=2,
    ∴B(2,﹣1).
    ∵A(﹣1,2),B(2,﹣1)两点在一次函数y=kx+b的图象上,
    ∴,解得,
    ∴一次函数的解析式为:y=﹣x+1;

    (2)∵直线l∥y轴,AD⊥l,
    ∴AD=3,D(2,2),
    ∵DC=2DA,
    ∴DC=6,
    ∵点C是直线l上一动点,
    ∴C(2,8)或(2,﹣4).
    九.二次函数综合题(共3小题)
    11.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
    (1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
    (2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
    (3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.


    【解答】解:(1)由题意可得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2﹣2x+3=﹣(x+1)2+4,
    ∴顶点坐标为(﹣1,4),
    当y=0时,则0=﹣x2﹣2x+3,
    ∴x1=1,x2=﹣3,
    ∴抛物线与x轴的交点坐标为(1,0),(﹣3,0);
    (2)如图,

    当y=3时,3=﹣x2﹣2x+3,
    ∴x1=0,x2=﹣2,
    由图象可得:当﹣2≤x≤0时,y≥3;
    (3)∵a+b+c=0且a>b>c,
    ∴a>0,c<0,b=﹣a﹣c,一元二次方程ax2+bx+c=0必有一根为x=1,
    ∵一元二次方程ax2+bx+c=0两根之差等于a﹣c,
    ∴方程的另一个根为1+c﹣a,
    ∴抛物线y=ax2+bx+c的对称轴为:直线x=1+,
    ∴﹣=1+,
    ∴a+c=﹣a2+ac+2a,
    ∴(a﹣1)(a﹣c)=0,
    ∵a>c,
    ∴a=1,P(﹣c,y1),Q(1+3c,y2),
    ∴b=﹣1﹣c,
    ∴抛物线解析式为:y=x2﹣(1+c)x+c,
    ∴当x=﹣c时,则y1=(﹣c)2﹣(1+c)(﹣c)+c=2c2+c﹣,
    当x=1+3c时,则y2=(1+3c)2﹣(1+c)(1+3c)+c=6c2+3c,
    ∴y2﹣y1=(6c2+3c)﹣(2c2+c﹣)=4(c+)2﹣,
    ∵b>c,
    ∴﹣1﹣c>c,
    ∴c<﹣,
    ∴4(c+)2﹣>0,
    ∴y2>y1.
    12.(2021•自贡)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.
    (1)直接写出∠OCA的度数和线段AB的长(用a表示);
    (2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为:4,求此抛物线的解析式;
    (3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.

    【解答】解:(1)∵抛物线y=(x+1)(x﹣a),令y=0,可得x=﹣1或a,
    ∴B(﹣1,0),A(a,0),
    令x=0,得到y=﹣a,
    ∴C(0,﹣a),
    ∴OA=OC=a,OB=1,
    ∴AB=1+a.
    ∵∠AOC=90°,
    ∴∠OCA=45°.

    (2)∵△AOC是等腰直角三角形,
    ∴∠OAC=45°,
    ∵点D是△ABC的外心,
    ∴∠BDC=2∠CAB=90°,DB=DC,
    ∴△BDC也是等腰直角三角形,
    ∴△DBC∽△OAC,
    ∴=,
    ∴=,
    解得a=2,
    经检验,a=2是方程的解,
    ∴抛物线的解析式为y=(x+1)(x﹣2)=x2﹣x﹣2.

    (3)作点C关于抛物线的对称轴x=的对称点C′,连接AC′.

    ∵C(0,﹣2),C′(1,﹣2),
    ∴C′C∥AB,
    ∵BC,AC′关于直线x=对称,
    ∴CB=AC′,
    ∴四边形ABCC′是等腰梯形,
    ∴∠CBA=∠C′AB,
    ∵∠DBC=∠OAC=45°,
    ∴∠ABD=∠CAC′,
    ∴当点P与点C′重合时满足条件,
    ∴P(1,﹣2).
    作点P关于直线AC的对称点E(0,﹣1),则∠EAC=∠PAC=∠ABD,作直线AE交抛物线于P′,点P′满足条件,
    ∵A(2,0),E(0,﹣1),
    ∴直线AE的解析式为y=x﹣1,
    由,解得(即点A)或,
    ∴P′(﹣,﹣),
    综上所述,满足条件的点P的坐标为(1,﹣2)或(﹣,﹣).
    13.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.
    (1)求抛物线的解析式;
    (2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:
    ①求PD+PC的最小值;
    ②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.

    【解答】解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,
    即﹣3a=3,解得:a=﹣1,
    故抛物线的表达式为:y=﹣x2﹣2x+3;

    (2)由抛物线的表达式得,点M(﹣1,4),点N(0,3),
    则tan∠MAC==2,
    则设直线AM的表达式为:y=2x+b,
    将点A的坐标代入上式并解得:b=6,
    故直线AM的表达式为:y=2x+6,
    ∵∠EFD=∠DHA=90°,∠EDF=∠ADH,
    ∴∠MAC=∠DEF,则tan∠DEF=2,则cos∠DEF=,
    设点E(x,﹣x2﹣2x+3),则点D(x,2x+6),
    则FE=EDcos∠DEF=(﹣x2﹣2x+3﹣2x﹣6)×=(﹣x2﹣4x﹣3),
    ∵﹣<0,故EF有最大值,此时x=﹣2,故点D(﹣2,2);
    ①点C(﹣1,0)关于y轴的对称点为点B(1,0),连接BD交y轴于点P,则点P为所求点,

    PD+PC=PD+PB=DB为最小,
    则BD==;
    ②过点O作直线OK,使sin∠NOK=,过点D作DK⊥OK于点K,交y轴于点Q,则点Q为所求点,

    DQ+OQ=DQ+QK=DK为最小值,
    则直线OK的表达式为:y=x,
    ∵DK⊥OK,故设直线DK的表达式为:y=﹣x+b,
    将点D的坐标代入上式并解得:b=2﹣,
    而直线DK的表达式为:y=﹣x+2﹣,
    故点Q(0,2﹣),
    由直线KD的表达式知,QD与x轴负半轴的夹角(设为α)的正切值为,则cosα=,
    则DQ===,而OQ=(2﹣),
    则DQ+OQ为最小值=+(2﹣)=.
    一十.全等三角形的判定与性质(共1小题)
    14.(2022•自贡)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.

    【解答】证明:∵△ABC是等边三角形,
    ∴AB=AC,∠ABC=∠ACB=60°,
    ∴∠ABD=∠ACE=120°,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS),
    ∴∠D=∠E.
    一十一.矩形的性质(共2小题)
    15.(2022•自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).
    (1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB=AB.我们还可以得到FC= CD ,EF= AD ;
    (2)进一步观察,我们还会发现EF∥AD,请证明这一结论;
    (3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC之间的距离.

    【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,
    ∴矩形ABCD的各边的长度没有改变,
    ∴AB=BE,EF=AD,CF=CD,
    故答案为:CD,AD;
    (2)证明:∵四边形ABCD是矩形,
    ∴AD∥BC,AB=CD,AD=BC,
    ∵AB=BE,EF=AD,CF=CD,
    ∴BE=CF,EF=BC,
    ∴四边形BEFC是平行四边形,
    ∴EF∥BC,
    ∴EF∥AD;
    (3)如图,过点E作EG⊥BC于G,

    ∵DC=AB=BE=80cm,点H是CD的中点,
    ∴CH=DH=40cm,
    在Rt△BHC中,BH===50(cm),
    ∵EG⊥BC,
    ∴CH∥EG,
    ∴△BCH∽△BGE,
    ∴,
    ∴=,
    ∴EG=64,
    ∴EF与BC之间的距离为64cm.
    16.(2021•自贡)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.

    【解答】证明:∵四边形ABCD是矩形,
    ∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,
    ∴DF=BE,又AB∥CD,
    ∴四边形DEBF是平行四边形,
    ∴DE=BF.
    一十二.正方形的性质(共1小题)
    17.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.
    求证:AE=BF.

    【解答】证明:在正方形ABCD中,
    AB=BC=CD=DA,∠ABE=∠BCF=90°,
    ∵CE=DF,
    ∴BE=CF,
    在△AEB与△BFC中,

    ∴△AEB≌△BFC(SAS),
    ∴AE=BF.
    一十三.圆的综合题(共2小题)
    18.(2021•自贡)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
    (1)求证:∠DAE=∠DAC;
    (2)求证:DF•AC=AD•DC;
    (3)若sin∠C=,AD=4,求EF的长.

    【解答】(1)证明:如图,连接OD.
    ∵CD是⊙O的切线,
    ∴OD⊥EC,
    ∵AE⊥CE,
    ∴AE∥OD,
    ∴∠EAD=∠ADO,
    ∵OA=OD,
    ∴∠ADO=∠DAO,
    ∴∠DAE=∠DAC.

    (2)证明:如图,连接BF.
    ∵AB是直径,
    ∴∠AFB=90°,
    ∵AE⊥EC,
    ∴∠AFB=∠E=90°,
    ∴BF∥EC,
    ∴∠ABF=∠C,
    ∵∠ADF=∠ABF,
    ∴∠ADF=∠C,
    ∵∠DAF=∠DAC,
    ∴△DAF∽△CAD,
    ∴=,
    ∴DF•AC=AD•DC.

    (3)解:过点D作DH⊥AC于H.
    ∵CD是⊙O的切线,
    ∴∠ODC=90°,
    ∵sin∠C==,
    ∴可以假设OD=k,OC=4k,则OA=OD=k,CD=k,
    ∵•OD•DC=•OC•DH,
    ∴DH=k,
    ∴OH==k,
    ∴AH=OA+OH=k,
    ∵AD2=AH2+DH2,
    ∴(4)2=(k)2+(k)2
    ∴k=8或﹣8(舍弃),
    ∴AC=5k=40,AB=2k=16,
    ∴sinC===sin∠ABF=,
    ∴AE=10,AF=4,
    ∴EF=AE﹣AF=10﹣4=6.

    19.(2020•自贡)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA=PC=AB,连接PO交AC于点D,延长PO交⊙O于点F.
    (1)证明:=;
    (2)若tan∠ABC=2,证明:PA是⊙O的切线;
    (3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.

    【解答】(1)证明:连接OC.
    ∵PC=PA,OC=OA,
    ∴OP垂直平分线段AC,
    ∴=.

    (2)证明:设BC=a,
    ∵AB是直径,
    ∴∠ACB=90°,
    ∵tan∠ABC==2,
    ∴AC=2a,AB===3a,
    ∴OC=OA=OB=,CD=AD=a,
    ∵PA=PC=AB,
    ∴PA=PC=3a,
    ∵∠PDC=90°,
    ∴PD===4a,
    ∵DC=DA,AO=OB,
    ∴OD=BC=a,
    ∴AD2=PD•OD,
    ∴=,
    ∵∠ADP=∠ADO=90°,
    ∴△ADP∽△ODA,
    ∴∠PAD=∠DOA,
    ∵∠DOA+∠DAO=90°,
    ∴∠PAD+∠DAO=90°,
    ∴∠PAO=90°,
    ∴OA⊥PA,
    ∴PA是⊙O的切线.

    (3)解:法一:如图,过点E作EJ⊥PF于J,BK⊥PF于K.
    ∵BC=2,
    由(2)可知,PA=6,AB=6,
    ∵∠PAB=90°,
    ∴PB===6,
    ∵PA2=PE•PB,
    ∴PE==4,
    ∵∠CDK=∠BKD=∠BCD=90°,
    ∴四边形CDKB是矩形,
    ∴CD=BK=2,BC=DK=2,
    ∵PD=8,
    ∴PK=10,
    ∵EJ∥BK,
    ∴==,
    ∴==,
    ∴EJ=,PJ=,
    ∴DJ=PD﹣PJ=8﹣=,
    ∴DE===.
    法二:由(2)可得BC=2,AC=4,AB=6,PA=6,PB=6,
    在Rt△PBA中,连接AE,可得∠AEB=90°,
    ∴∠PEA=∠PAB=90°,又∠APE=∠APB,
    ∴△PEA∽△PAB,
    ∴=,
    ∴PE=4,
    过E作EJ⊥PD于J,过B作BK⊥PF于K,如图所示,
    ∴∠BCD=∠CDF=∠BKD=90°,
    ∴四边形BCDK是矩形,
    ∴BK=CD=2,
    在Rt△BPH中,sin∠BPH==,
    在Rt△PEN中,sin∠BPH=,
    ∴EJ=,
    ∴PJ==,
    ∴JD=PD﹣PJ=,
    在Rt△JED中,DE==.

    一十四.作图—应用与设计作图(共1小题)
    20.(2021•自贡)如图,△ABC的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC的角平分线BD(不写作法,保留作图痕迹).

    【解答】解:如图,线段BD即为所求作.

    一十五.解直角三角形的应用-仰角俯角问题(共2小题)
    21.(2022•自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
    (1)探究原理
    制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.

    (2)实地测量
    如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(≈1.73,结果精确到0.1米)
    (3)拓展探究
    公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).

    【解答】解:(1)∵∠COG=90°,∠AON=90°,
    ∴∠POC+∠CON=∠GON+∠CON,
    ∴∠POC=∠GON;
    (2)由题意可得,
    KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°,
    ∵tan∠POQ=,
    ∴tan60°=,
    解得PQ=5,
    ∴PH=PQ+QH=5+1.5≈10.2(米),
    即树高PH为10.2米;
    (3)由题意可得,
    O1O2=m,O1E=O2F=DH=1.5米,
    由图可得,tanβ=,tanα=,
    ∴O2D=,O1D=,
    ∵O1O2=O2D﹣O1D,
    ∴m=﹣,
    ∴PD=,
    ∴PH=PD+DH=(+1.5)米.
    22.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)

    【解答】解:由题意可知AB=24米,∠BDA=53°,
    ∴tan∠BDA==≈1.33,
    ∴AD=≈18.05(米).
    ∵tan∠CAD=tan30°===,
    ∴CD=18.05×≈10.4(米).
    故办公楼的高度约为10.4米.
    一十六.列表法与树状图法(共3小题)
    23.(2022•自贡)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t<3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:

    (1)求参与问卷调查的学生人数n,并将条形统计图补充完整;
    (2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;
    (3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.
    【解答】解:(1)n==100,
    ∴D等级的人数=100﹣40﹣15﹣10=35(人),
    条形统计图补充如下:

    (2)学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数=2000×=900(人),
    ∴估计每周参加课外兴趣小组活动累计时间不少于4小时的学生为900人;
    (3)设A等级2人分别用A1,A2表示,D等级2人分别用D1,D2表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:

    ∴共有12种等可能结果,而选出2人中2人均属D等级有2种,
    ∴所求概率==.
    24.(2021•自贡)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.

    (1)本次抽样调查的样本容量是  100 ,请补全条形统计图;
    (2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
    (3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.
    【解答】解:(1)∵由条形统计图可得C等级的人数为25人,由扇形统计图可得C等级的人数占比为25%,
    ∴样本容量为25÷25%=100.
    ∵B等级的人数占比为35%,
    ∴B等级的人数为:100×35%=35(人).
    ∴D等级的人数:100﹣35﹣35﹣25=5(人).
    补全条形统计图如下:

    故答案为:100.
    (2)D等级的学生有:100×5%=5(人).
    由题意列表如下:

    由表格可得,共有20种等可能,其中恰好回访到一男一女的等可能有12种,
    ∴恰好回访到一男一女的概率为=.
    (3)∵样本中A(优秀)的占比为35%,
    ∴可以估计该校2000名学生中的A(优秀)的占比为35%.
    ∴估计该校竞赛成绩“优秀”的学生人数为:2000×35%=700(人).
    25.(2020•自贡)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.

    (1)本次调查的学生人数是 60 人,m= 30 ;
    (2)请补全条形统计图;
    (3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是  ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是  .
    【解答】解:(1)12÷20%=60(人),×100%=30%,
    则m=30;
    故答案为:60,30;
    (2)C组的人数为60﹣18﹣12﹣9=21(人),补全条形统计图如图:

    (3)如果小张同学随机选择连续两天,有4种等可能的结果,即(星期一,星期二)、(星期二,星期三)、(星期三,星期四)、(星期四,星期五),
    其中有一天是星期一的概率是;
    小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,画树状图如图:

    共有12个等可能的结果,其中有一天是星期三的结果有6个,
    ∴其中有一天是星期三的概率为=;
    故答案为:,.

    相关试卷

    四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类:

    这是一份四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共26页。试卷主要包含了在反比例函数y1=图象上,两点,,B两点,与y轴交于点C等内容,欢迎下载使用。

    四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类:

    这是一份四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共16页。试卷主要包含了0﹣22,解不等式组,函数图象是研究函数的重要工具,数据如下等内容,欢迎下载使用。

    四川省雅安市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类:

    这是一份四川省雅安市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类,共34页。试卷主要包含了0+|3﹣|﹣4sin60°,﹣2;,﹣1;,的图象上等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map