![四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类第1页](http://img-preview.51jiaoxi.com/2/3/13340653/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类第2页](http://img-preview.51jiaoxi.com/2/3/13340653/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类第3页](http://img-preview.51jiaoxi.com/2/3/13340653/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类
展开
这是一份四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类,共38页。试卷主要包含了﹣1,,其中x是不等式组的整数解,解不等式组,函数图象是研究函数的重要工具,两点等内容,欢迎下载使用。
四川省自贡市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类
一.实数的运算(共2小题)
1.(2021•自贡)计算:﹣|﹣7|+(2﹣)0.
2.(2020•自贡)计算:|﹣2|﹣(+π)0+(﹣)﹣1.
二.分式的化简求值(共1小题)
3.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.
三.分式方程的应用(共2小题)
4.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
5.(2021•自贡)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
四.解一元一次不等式(共1小题)
6.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.
(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?
(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.
∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,
∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.
∴|x+1|+|x﹣2|的最小值是3.
(3)解决问题:
①|x﹣4|+|x+2|的最小值是 ;
②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;
③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.
五.解一元一次不等式组(共1小题)
7.(2022•自贡)解不等式组:,并在数轴上表示其解集.
六.一次函数与一元一次不等式(共1小题)
8.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=﹣的图象,并探究其性质.
列表如下:
x
…
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
…
y
…
a
0
b
﹣2
﹣
﹣
…
(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数y=﹣的图象,判断下列关于该函数性质的命题:
①当﹣2≤x≤2时,函数图象关于直线y=x对称;
②x=2时,函数有最小值,最小值为﹣2;
③﹣1<x<1时,函数y的值随x的增大而减小.
其中正确的是 .(请写出所有正确命题的番号)
(3)结合图象,请直接写出不等式>x的解集 .
七.一次函数的应用(共1小题)
9.(2020•自贡)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.
(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;
(2)新冠疫情期间如何选择这两家商场去购物更省钱?
八.反比例函数综合题(共1小题)
10.(2022•自贡)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(m,﹣1)两点.
(1)求反比例函数和一次函数的解析式;
(2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C的坐标.
九.二次函数综合题(共3小题)
11.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
(1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
(3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.
12.(2021•自贡)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.
(1)直接写出∠OCA的度数和线段AB的长(用a表示);
(2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为:4,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.
13.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.
(1)求抛物线的解析式;
(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:
①求PD+PC的最小值;
②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.
一十.全等三角形的判定与性质(共1小题)
14.(2022•自贡)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.
一十一.矩形的性质(共2小题)
15.(2022•自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).
(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB=AB.我们还可以得到FC= ,EF= ;
(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;
(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC之间的距离.
16.(2021•自贡)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.
一十二.正方形的性质(共1小题)
17.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.
求证:AE=BF.
一十三.圆的综合题(共2小题)
18.(2021•自贡)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
(1)求证:∠DAE=∠DAC;
(2)求证:DF•AC=AD•DC;
(3)若sin∠C=,AD=4,求EF的长.
19.(2020•自贡)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA=PC=AB,连接PO交AC于点D,延长PO交⊙O于点F.
(1)证明:=;
(2)若tan∠ABC=2,证明:PA是⊙O的切线;
(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.
一十四.作图—应用与设计作图(共1小题)
20.(2021•自贡)如图,△ABC的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC的角平分线BD(不写作法,保留作图痕迹).
一十五.解直角三角形的应用-仰角俯角问题(共2小题)
21.(2022•自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
(1)探究原理
制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.
(2)实地测量
如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(≈1.73,结果精确到0.1米)
(3)拓展探究
公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).
22.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)
一十六.列表法与树状图法(共3小题)
23.(2022•自贡)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t<3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:
(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;
(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;
(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.
24.(2021•自贡)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.
(1)本次抽样调查的样本容量是 ,请补全条形统计图;
(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.
25.(2020•自贡)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.
(1)本次调查的学生人数是 人,m= ;
(2)请补全条形统计图;
(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是 ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是 .
参考答案与试题解析
一.实数的运算(共2小题)
1.(2021•自贡)计算:﹣|﹣7|+(2﹣)0.
【解答】解:原式=5﹣7+1=﹣1.
2.(2020•自贡)计算:|﹣2|﹣(+π)0+(﹣)﹣1.
【解答】解:原式=2﹣1+(﹣6)
=1+(﹣6)
=﹣5.
二.分式的化简求值(共1小题)
3.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.
【解答】解:•(+1)
=
=
=,
由不等式组,得﹣1≤x<1,
∵x是不等式组的整数解,
∴x=﹣1,0,
∵当x=﹣1时,原分式无意义,
∴x=0,
当x=0时,原式==﹣.
三.分式方程的应用(共2小题)
4.(2022•自贡)学校师生去距学校45千米的吴玉章故居开展研学旅行活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达.已知汽车速度是自行车速度的3倍,求张老师骑车的速度.
【解答】解:设张老师骑车的速度为x千米/小时,则汽车的速度为3x千米/小时,
由题意可得:﹣2=,
解得x=15,
经检验,x=15是原分式方程的解,
答:张老师骑车的速度是15千米/小时.
5.(2021•自贡)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A,B两种型号的无人机都被用来运送快件,A型机比B型机平均每小时多运送20件,A型机运送700件所用时间与B型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?
【解答】解:设A型机平均每小时运送快递x件,则B型机平均每小时运送快递(x﹣20)件,
根据题意得:,
解得:x=70,
经检验,x=70是原分式方程的根,且符合题意,
∴70﹣20=50,
答:A型机平均每小时运送快递70件,B型机平均每小时运送快递50件.
四.解一元一次不等式(共1小题)
6.(2020•自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离:因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.
(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?
(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.
∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,
∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.
∴|x+1|+|x﹣2|的最小值是3.
(3)解决问题:
①|x﹣4|+|x+2|的最小值是 6 ;
②利用上述思想方法解不等式:|x+3|+|x﹣1|>4;
③当a为何值时,代数式|x+a|+|x﹣3|的最小值是2.
【解答】解:(3)解决问题:
①|x﹣4|+|x+2|=|x﹣4|+|x﹣(﹣2)|,表示P到A与到B的距离之和,
点P在线段AB上,PA+PB=6,
当点P在点A的左侧或点B的右侧时,PA+PB>6,
∴|x﹣4|+|x+2|的最小值是6;
故答案为:6;
②如图所示,满足|x+3|+|x﹣1|=|x﹣(﹣3)|+|x﹣1|>4,表示到﹣3和1距离之和大于4的范围,
当点在﹣3和1之间时,距离之和为4,不满足题意;
当点在﹣3的左边或1的右边时,距离之和大于4,
则x范围为x<﹣3或x>1;
③当a为﹣1或﹣5时,代数式|x+a|+|x﹣3|的最小值是2.
五.解一元一次不等式组(共1小题)
7.(2022•自贡)解不等式组:,并在数轴上表示其解集.
【解答】解:由不等式3x<6,解得:x<2,
由不等式5x+4>3x+2,解得:x>﹣1,
∴不等式组的解集为:﹣1<x<2,
∴在数轴上表示不等式组的解集为:
六.一次函数与一元一次不等式(共1小题)
8.(2021•自贡)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数y=﹣的图象,并探究其性质.
列表如下:
x
…
﹣4
﹣3
﹣2
﹣1
0
1
2
3
4
…
y
…
a
0
b
﹣2
﹣
﹣
…
(1)直接写出表中a、b的值,并在平面直角坐标系中画出该函数的图象;
(2)观察函数y=﹣的图象,判断下列关于该函数性质的命题:
①当﹣2≤x≤2时,函数图象关于直线y=x对称;
②x=2时,函数有最小值,最小值为﹣2;
③﹣1<x<1时,函数y的值随x的增大而减小.
其中正确的是 ②③ .(请写出所有正确命题的番号)
(3)结合图象,请直接写出不等式>x的解集 x<﹣2或0<x<2 .
【解答】解:(1)把x=﹣2代入y=﹣得,y=﹣=2,
把x=1代入y=﹣得,y=﹣=﹣,
∴a=2,b=﹣,
函数y=﹣的图象如图所示:
(2)观察函数y=﹣的图象,
①当﹣2≤x≤2时,函数图象原点对称;错误;
②x=2时,函数有最小值,最小值为﹣2;正确;
③﹣1<x<1时,函数y的值随x的增大而减小,正确.
故答案为②③;
(3)由图象可知,函数y=﹣与直线y=﹣x的交点为(﹣2,2)、(0,0)、(2,﹣2)
∴不等式>x的解集为x<﹣2或0<x<2.
七.一次函数的应用(共1小题)
9.(2020•自贡)甲、乙两家商场平时以同样价格出售相同的商品.新冠疫情期间,为了减少库存,甲、乙两家商场打折促销.甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.
(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;
(2)新冠疫情期间如何选择这两家商场去购物更省钱?
【解答】解:(1)由题意可得,
y甲=0.9x,
当0≤x≤100时,y乙=x,
当x>100时,y乙=100+(x﹣100)×0.8=0.8x+20,
由上可得,y乙=;
(2)当0≤x≤100时,此时选择甲商场购物更省钱;
当0.9x<0.8x+20时,得x<200,即100<x<200,此时选择甲商场购物更省钱;
当0.9x=0.8x+20时,得x=200,即此时两家商场购物一样;
当0.9x>0.8x+20时,得x>200,即此时选择乙商场购物更省钱.
八.反比例函数综合题(共1小题)
10.(2022•自贡)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,2),B(m,﹣1)两点.
(1)求反比例函数和一次函数的解析式;
(2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C的坐标.
【解答】解:(1)∵A(﹣1,2)在反比例函数y=的图象上,
∴n=2×(﹣1)=﹣2,
∴其函数解析式为y=﹣;
∵B(m,﹣1)在反比例函数的图象上,
∴﹣m=﹣2,
∴m=2,
∴B(2,﹣1).
∵A(﹣1,2),B(2,﹣1)两点在一次函数y=kx+b的图象上,
∴,解得,
∴一次函数的解析式为:y=﹣x+1;
(2)∵直线l∥y轴,AD⊥l,
∴AD=3,D(2,2),
∵DC=2DA,
∴DC=6,
∵点C是直线l上一动点,
∴C(2,8)或(2,﹣4).
九.二次函数综合题(共3小题)
11.(2022•自贡)已知二次函数y=ax2+bx+c(a≠0).
(1)若a=﹣1,且函数图象经过(0,3),(2,﹣5)两点,求此二次函数的解析式,直接写出抛物线与x轴交点及顶点坐标;
(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值y≥3时自变量x的取值范围;
(3)若a+b+c=0且a>b>c,一元二次方程ax2+bx+c=0两根之差等于a﹣c,函数图象经过P(﹣c,y1),Q(1+3c,y2)两点,试比较y1、y2的大小.
【解答】解:(1)由题意可得:,
解得:,
∴抛物线的解析式为:y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点坐标为(﹣1,4),
当y=0时,则0=﹣x2﹣2x+3,
∴x1=1,x2=﹣3,
∴抛物线与x轴的交点坐标为(1,0),(﹣3,0);
(2)如图,
当y=3时,3=﹣x2﹣2x+3,
∴x1=0,x2=﹣2,
由图象可得:当﹣2≤x≤0时,y≥3;
(3)∵a+b+c=0且a>b>c,
∴a>0,c<0,b=﹣a﹣c,一元二次方程ax2+bx+c=0必有一根为x=1,
∵一元二次方程ax2+bx+c=0两根之差等于a﹣c,
∴方程的另一个根为1+c﹣a,
∴抛物线y=ax2+bx+c的对称轴为:直线x=1+,
∴﹣=1+,
∴a+c=﹣a2+ac+2a,
∴(a﹣1)(a﹣c)=0,
∵a>c,
∴a=1,P(﹣c,y1),Q(1+3c,y2),
∴b=﹣1﹣c,
∴抛物线解析式为:y=x2﹣(1+c)x+c,
∴当x=﹣c时,则y1=(﹣c)2﹣(1+c)(﹣c)+c=2c2+c﹣,
当x=1+3c时,则y2=(1+3c)2﹣(1+c)(1+3c)+c=6c2+3c,
∴y2﹣y1=(6c2+3c)﹣(2c2+c﹣)=4(c+)2﹣,
∵b>c,
∴﹣1﹣c>c,
∴c<﹣,
∴4(c+)2﹣>0,
∴y2>y1.
12.(2021•自贡)如图,抛物线y=(x+1)(x﹣a)(其中a>1)与x轴交于A、B两点,交y轴于点C.
(1)直接写出∠OCA的度数和线段AB的长(用a表示);
(2)若点D为△ABC的外心,且△BCD与△ACO的周长之比为:4,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线y=(x+1)(x﹣a)上是否存在一点P,使得∠CAP=∠DBA?若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=(x+1)(x﹣a),令y=0,可得x=﹣1或a,
∴B(﹣1,0),A(a,0),
令x=0,得到y=﹣a,
∴C(0,﹣a),
∴OA=OC=a,OB=1,
∴AB=1+a.
∵∠AOC=90°,
∴∠OCA=45°.
(2)∵△AOC是等腰直角三角形,
∴∠OAC=45°,
∵点D是△ABC的外心,
∴∠BDC=2∠CAB=90°,DB=DC,
∴△BDC也是等腰直角三角形,
∴△DBC∽△OAC,
∴=,
∴=,
解得a=2,
经检验,a=2是方程的解,
∴抛物线的解析式为y=(x+1)(x﹣2)=x2﹣x﹣2.
(3)作点C关于抛物线的对称轴x=的对称点C′,连接AC′.
∵C(0,﹣2),C′(1,﹣2),
∴C′C∥AB,
∵BC,AC′关于直线x=对称,
∴CB=AC′,
∴四边形ABCC′是等腰梯形,
∴∠CBA=∠C′AB,
∵∠DBC=∠OAC=45°,
∴∠ABD=∠CAC′,
∴当点P与点C′重合时满足条件,
∴P(1,﹣2).
作点P关于直线AC的对称点E(0,﹣1),则∠EAC=∠PAC=∠ABD,作直线AE交抛物线于P′,点P′满足条件,
∵A(2,0),E(0,﹣1),
∴直线AE的解析式为y=x﹣1,
由,解得(即点A)或,
∴P′(﹣,﹣),
综上所述,满足条件的点P的坐标为(1,﹣2)或(﹣,﹣).
13.(2020•自贡)在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.
(1)求抛物线的解析式;
(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E作EH⊥x轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时:
①求PD+PC的最小值;
②如图2,Q点为y轴上一动点,请直接写出DQ+OQ的最小值.
【解答】解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,
即﹣3a=3,解得:a=﹣1,
故抛物线的表达式为:y=﹣x2﹣2x+3;
(2)由抛物线的表达式得,点M(﹣1,4),点N(0,3),
则tan∠MAC==2,
则设直线AM的表达式为:y=2x+b,
将点A的坐标代入上式并解得:b=6,
故直线AM的表达式为:y=2x+6,
∵∠EFD=∠DHA=90°,∠EDF=∠ADH,
∴∠MAC=∠DEF,则tan∠DEF=2,则cos∠DEF=,
设点E(x,﹣x2﹣2x+3),则点D(x,2x+6),
则FE=EDcos∠DEF=(﹣x2﹣2x+3﹣2x﹣6)×=(﹣x2﹣4x﹣3),
∵﹣<0,故EF有最大值,此时x=﹣2,故点D(﹣2,2);
①点C(﹣1,0)关于y轴的对称点为点B(1,0),连接BD交y轴于点P,则点P为所求点,
PD+PC=PD+PB=DB为最小,
则BD==;
②过点O作直线OK,使sin∠NOK=,过点D作DK⊥OK于点K,交y轴于点Q,则点Q为所求点,
DQ+OQ=DQ+QK=DK为最小值,
则直线OK的表达式为:y=x,
∵DK⊥OK,故设直线DK的表达式为:y=﹣x+b,
将点D的坐标代入上式并解得:b=2﹣,
而直线DK的表达式为:y=﹣x+2﹣,
故点Q(0,2﹣),
由直线KD的表达式知,QD与x轴负半轴的夹角(设为α)的正切值为,则cosα=,
则DQ===,而OQ=(2﹣),
则DQ+OQ为最小值=+(2﹣)=.
一十.全等三角形的判定与性质(共1小题)
14.(2022•自贡)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.
【解答】证明:∵△ABC是等边三角形,
∴AB=AC,∠ABC=∠ACB=60°,
∴∠ABD=∠ACE=120°,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠D=∠E.
一十一.矩形的性质(共2小题)
15.(2022•自贡)如图,用四根木条钉成矩形框ABCD,把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变(四边形具有不稳定性).
(1)通过观察分析,我们发现图中线段存在等量关系,如线段EB由AB旋转得到,所以EB=AB.我们还可以得到FC= CD ,EF= AD ;
(2)进一步观察,我们还会发现EF∥AD,请证明这一结论;
(3)已知BC=30cm,DC=80cm,若BE恰好经过原矩形DC边的中点H,求EF与BC之间的距离.
【解答】(1)解:∵把边BC固定在地面上,向右边推动矩形框,矩形的形状会发生改变,
∴矩形ABCD的各边的长度没有改变,
∴AB=BE,EF=AD,CF=CD,
故答案为:CD,AD;
(2)证明:∵四边形ABCD是矩形,
∴AD∥BC,AB=CD,AD=BC,
∵AB=BE,EF=AD,CF=CD,
∴BE=CF,EF=BC,
∴四边形BEFC是平行四边形,
∴EF∥BC,
∴EF∥AD;
(3)如图,过点E作EG⊥BC于G,
∵DC=AB=BE=80cm,点H是CD的中点,
∴CH=DH=40cm,
在Rt△BHC中,BH===50(cm),
∵EG⊥BC,
∴CH∥EG,
∴△BCH∽△BGE,
∴,
∴=,
∴EG=64,
∴EF与BC之间的距离为64cm.
16.(2021•自贡)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.
【解答】证明:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,
∴DF=BE,又AB∥CD,
∴四边形DEBF是平行四边形,
∴DE=BF.
一十二.正方形的性质(共1小题)
17.(2020•自贡)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.
求证:AE=BF.
【解答】证明:在正方形ABCD中,
AB=BC=CD=DA,∠ABE=∠BCF=90°,
∵CE=DF,
∴BE=CF,
在△AEB与△BFC中,
,
∴△AEB≌△BFC(SAS),
∴AE=BF.
一十三.圆的综合题(共2小题)
18.(2021•自贡)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,AE⊥CD于点E,交⊙O于点F,连接AD,FD.
(1)求证:∠DAE=∠DAC;
(2)求证:DF•AC=AD•DC;
(3)若sin∠C=,AD=4,求EF的长.
【解答】(1)证明:如图,连接OD.
∵CD是⊙O的切线,
∴OD⊥EC,
∵AE⊥CE,
∴AE∥OD,
∴∠EAD=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAE=∠DAC.
(2)证明:如图,连接BF.
∵AB是直径,
∴∠AFB=90°,
∵AE⊥EC,
∴∠AFB=∠E=90°,
∴BF∥EC,
∴∠ABF=∠C,
∵∠ADF=∠ABF,
∴∠ADF=∠C,
∵∠DAF=∠DAC,
∴△DAF∽△CAD,
∴=,
∴DF•AC=AD•DC.
(3)解:过点D作DH⊥AC于H.
∵CD是⊙O的切线,
∴∠ODC=90°,
∵sin∠C==,
∴可以假设OD=k,OC=4k,则OA=OD=k,CD=k,
∵•OD•DC=•OC•DH,
∴DH=k,
∴OH==k,
∴AH=OA+OH=k,
∵AD2=AH2+DH2,
∴(4)2=(k)2+(k)2
∴k=8或﹣8(舍弃),
∴AC=5k=40,AB=2k=16,
∴sinC===sin∠ABF=,
∴AE=10,AF=4,
∴EF=AE﹣AF=10﹣4=6.
19.(2020•自贡)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA=PC=AB,连接PO交AC于点D,延长PO交⊙O于点F.
(1)证明:=;
(2)若tan∠ABC=2,证明:PA是⊙O的切线;
(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.
【解答】(1)证明:连接OC.
∵PC=PA,OC=OA,
∴OP垂直平分线段AC,
∴=.
(2)证明:设BC=a,
∵AB是直径,
∴∠ACB=90°,
∵tan∠ABC==2,
∴AC=2a,AB===3a,
∴OC=OA=OB=,CD=AD=a,
∵PA=PC=AB,
∴PA=PC=3a,
∵∠PDC=90°,
∴PD===4a,
∵DC=DA,AO=OB,
∴OD=BC=a,
∴AD2=PD•OD,
∴=,
∵∠ADP=∠ADO=90°,
∴△ADP∽△ODA,
∴∠PAD=∠DOA,
∵∠DOA+∠DAO=90°,
∴∠PAD+∠DAO=90°,
∴∠PAO=90°,
∴OA⊥PA,
∴PA是⊙O的切线.
(3)解:法一:如图,过点E作EJ⊥PF于J,BK⊥PF于K.
∵BC=2,
由(2)可知,PA=6,AB=6,
∵∠PAB=90°,
∴PB===6,
∵PA2=PE•PB,
∴PE==4,
∵∠CDK=∠BKD=∠BCD=90°,
∴四边形CDKB是矩形,
∴CD=BK=2,BC=DK=2,
∵PD=8,
∴PK=10,
∵EJ∥BK,
∴==,
∴==,
∴EJ=,PJ=,
∴DJ=PD﹣PJ=8﹣=,
∴DE===.
法二:由(2)可得BC=2,AC=4,AB=6,PA=6,PB=6,
在Rt△PBA中,连接AE,可得∠AEB=90°,
∴∠PEA=∠PAB=90°,又∠APE=∠APB,
∴△PEA∽△PAB,
∴=,
∴PE=4,
过E作EJ⊥PD于J,过B作BK⊥PF于K,如图所示,
∴∠BCD=∠CDF=∠BKD=90°,
∴四边形BCDK是矩形,
∴BK=CD=2,
在Rt△BPH中,sin∠BPH==,
在Rt△PEN中,sin∠BPH=,
∴EJ=,
∴PJ==,
∴JD=PD﹣PJ=,
在Rt△JED中,DE==.
一十四.作图—应用与设计作图(共1小题)
20.(2021•自贡)如图,△ABC的顶点均在正方形网格格点上.只用不带刻度的直尺,作出△ABC的角平分线BD(不写作法,保留作图痕迹).
【解答】解:如图,线段BD即为所求作.
一十五.解直角三角形的应用-仰角俯角问题(共2小题)
21.(2022•自贡)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:
(1)探究原理
制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由.
(2)实地测量
如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(≈1.73,结果精确到0.1米)
(3)拓展探究
公园高台上有一凉亭,为测量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).
【解答】解:(1)∵∠COG=90°,∠AON=90°,
∴∠POC+∠CON=∠GON+∠CON,
∴∠POC=∠GON;
(2)由题意可得,
KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°,
∵tan∠POQ=,
∴tan60°=,
解得PQ=5,
∴PH=PQ+QH=5+1.5≈10.2(米),
即树高PH为10.2米;
(3)由题意可得,
O1O2=m,O1E=O2F=DH=1.5米,
由图可得,tanβ=,tanα=,
∴O2D=,O1D=,
∵O1O2=O2D﹣O1D,
∴m=﹣,
∴PD=,
∴PH=PD+DH=(+1.5)米.
22.(2021•自贡)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan37°≈0.75,tan53°≈1.33,≈1.73)
【解答】解:由题意可知AB=24米,∠BDA=53°,
∴tan∠BDA==≈1.33,
∴AD=≈18.05(米).
∵tan∠CAD=tan30°===,
∴CD=18.05×≈10.4(米).
故办公楼的高度约为10.4米.
一十六.列表法与树状图法(共3小题)
23.(2022•自贡)为了解学生每周参加课外兴趣小组活动的累计时间t(单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按0≤t<3,3≤t<4,4≤t<5,t≥5分为四个等级,分别用A、B、C、D表示.如图是受损的调查统计图,请根据图上残存信息解决以下问题:
(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;
(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;
(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况.请用画树状图法或列表法求这2人均属D等级的概率.
【解答】解:(1)n==100,
∴D等级的人数=100﹣40﹣15﹣10=35(人),
条形统计图补充如下:
(2)学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数=2000×=900(人),
∴估计每周参加课外兴趣小组活动累计时间不少于4小时的学生为900人;
(3)设A等级2人分别用A1,A2表示,D等级2人分别用D1,D2表示,随机选出2人向老师汇报兴趣活动情况的树状图如下:
∴共有12种等可能结果,而选出2人中2人均属D等级有2种,
∴所求概率==.
24.(2021•自贡)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.
(1)本次抽样调查的样本容量是 100 ,请补全条形统计图;
(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.
【解答】解:(1)∵由条形统计图可得C等级的人数为25人,由扇形统计图可得C等级的人数占比为25%,
∴样本容量为25÷25%=100.
∵B等级的人数占比为35%,
∴B等级的人数为:100×35%=35(人).
∴D等级的人数:100﹣35﹣35﹣25=5(人).
补全条形统计图如下:
故答案为:100.
(2)D等级的学生有:100×5%=5(人).
由题意列表如下:
由表格可得,共有20种等可能,其中恰好回访到一男一女的等可能有12种,
∴恰好回访到一男一女的概率为=.
(3)∵样本中A(优秀)的占比为35%,
∴可以估计该校2000名学生中的A(优秀)的占比为35%.
∴估计该校竞赛成绩“优秀”的学生人数为:2000×35%=700(人).
25.(2020•自贡)某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪,B:环境保护,C:卫生保洁,D:垃圾分类”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如图条形统计图和扇形统计图.
(1)本次调查的学生人数是 60 人,m= 30 ;
(2)请补全条形统计图;
(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小张同学随机选择连续两天,其中有一天是星期一的概率是 ;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中有一天是星期三的概率是 .
【解答】解:(1)12÷20%=60(人),×100%=30%,
则m=30;
故答案为:60,30;
(2)C组的人数为60﹣18﹣12﹣9=21(人),补全条形统计图如图:
(3)如果小张同学随机选择连续两天,有4种等可能的结果,即(星期一,星期二)、(星期二,星期三)、(星期三,星期四)、(星期四,星期五),
其中有一天是星期一的概率是;
小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,画树状图如图:
共有12个等可能的结果,其中有一天是星期三的结果有6个,
∴其中有一天是星期三的概率为=;
故答案为:,.
相关试卷
这是一份四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共26页。试卷主要包含了在反比例函数y1=图象上,两点,,B两点,与y轴交于点C等内容,欢迎下载使用。
这是一份四川省自贡市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共16页。试卷主要包含了0﹣22,解不等式组,函数图象是研究函数的重要工具,数据如下等内容,欢迎下载使用。
这是一份四川省雅安市三年(2020-2022)年中考数学真题汇编-03解答题知识点分类,共34页。试卷主要包含了0+|3﹣|﹣4sin60°,﹣2;,﹣1;,的图象上等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)