![人教b版高中数学必修第三册课时跟踪检测8正弦函数的性质与图像含答案第1页](http://img-preview.51jiaoxi.com/3/3/13340736/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教b版高中数学必修第三册课时跟踪检测8正弦函数的性质与图像含答案第2页](http://img-preview.51jiaoxi.com/3/3/13340736/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2019人教b版数学必修第三册习题整套
数学人教B版 (2019)7.3.1 正弦函数的性质与图像课后作业题
展开
这是一份数学人教B版 (2019)7.3.1 正弦函数的性质与图像课后作业题,共5页。试卷主要包含了下列关系式中正确的是等内容,欢迎下载使用。
课时跟踪检测(八) 正弦函数的性质与图像A级——学考水平达标练1.函数y=-sin x,x∈的简图是( )解析:选D 可以用特殊点来验证.当x=0时,y=-sin 0=0,排除A、C;当x=时,y=-sin =1,排除B.2.函数y=9-sin x的单调递增区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)解析:选B y=9-sin x的单调递增区间与y=sin x的单调递减区间相同.3.下列关系式中正确的是( )A.sin 11°<cos 10°<sin 168°B.sin 168°<sin 11°<cos 10°C.sin 11°<sin 168°<cos 10°D.sin 168°<cos 10°<sin 11°解析:选C sin 168°=sin(180°-12°)=sin 12°,cos 10°=sin 80°.因为正弦函数y=sin x在区间上为增函数,所以sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.4.(多选题)已知函数f(x)=cos(x∈R),下面结论正确的是( )A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是减函数C.函数f(x)的图像关于原点对称D.函数f(x)为偶函数解析:选ABC ∵f(x)=cos=-sin x,结合函数y=-sin x的图像及性质知A、B、C正确.5.在[0,2π]内,不等式sin x<-的解集是( )A.(0,π) B.C. D.解析:选C 画出y=sin x,x∈[0,2π]的草图如下.因为sin=,所以sin=-,sin=-.即在[0,2π]内,满足sin x=-的x=或.可知不等式sin x<-的解集是.故选C.6.若sin x=2m+1且x∈R,则m的取值范围是______.解析:因为-1≤sin x≤1,sin x=2m+1,所以-1≤2m+1≤1,解得-1≤m≤0.答案:[-1,0]7.函数y=sin2x+sin x的值域是________.解析:令sin x=t,则-1≤t≤1,则y=t2+t=2-.由于-1≤t≤1,则-≤y≤2.答案:8.若x是三角形的最小角,则y=sin x的值域是________.解析:由三角形内角和为π知,若x为三角形中的最小角,则0<x≤,如图,由y=sin x的图像知y∈.答案: 9.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈时,f(x)=sin x,求f的值.解:∵f(x)的最小正周期是π,∴f=f=f.∵f(x)是R上的偶函数,∴f=f=sin=,∴f=.10.用“五点法”作出函数y=2-sin x,x∈[0,2π]的图像.解:列表如下:x0π2πsin x010-102-sin x21232 描点,用光滑曲线连起来,图像如图所示.B级——高考水平高分练1.(多选题)函数f(x)=sin x+2|sin x|,x∈[0,2π]的图像与直线y=k的交点个数可能是( )A.0 B.1C.2 D.3解析:选ABCD f(x)=sin x+2|sin x|=在同一坐标系内分别作出函数y=f(x)与y=k的图像,如图所示,当k>3或k<0时,两图像无交点;当k=3时,两图像有1个交点;当1<k<3时,两图像有2个交点;当k=1或k=0时,两图像有3个交点;当0<k<1时,两图像有4个交点.由题意知,可选A、B、C、D.2.已知函数f(x)=2sin x,对任意的x∈R都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为( )A. B.C.π D.2π解析:选C 由不等式f(x1)≤f(x)≤f(x2)对任意x∈R恒成立,不难发现f(x1),f(x2)分别为f(x)的最小值和最大值,故|x1-x2|的最小值为函数f(x)=2sin x的半个周期.因为f(x)=2sin x的周期为2π,所以|x1-x2|的最小值为π.3.函数y=sin x的值域为________.解析:画出函数y=sin x的图像,如图.由图像可知,当x=时,ymax=1,当x=时,ymin=-,所以函数y=sin x的值域为.答案:4.求函数y=(sin x-1)2+2的最大值和最小值,并说出取得最大值和最小值时相应的x的值.解:设t=sin x,则有y=(t-1)2+2,且t∈[-1,1].当t=-1时,函数y=(t-1)2+2取得最大值(-1-1)2+2=6.由t=sin x=-1,得x=2kπ-(k∈Z),即当x=2kπ-(k∈Z)时,函数y=(sin x-1)2+2取得最大值6.当t=1时,函数y=(t-1)2+2取得最小值(1-1)2+2=2.由t=sin x=1,得x=2kπ+(k∈Z),即当x=2kπ+(k∈Z)时,函数y=(sin x-1)2+2取得最小值2. 5.定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-4,-3]上是增函数,α,β是锐角三角形的两个内角,试判断f(sin α)与f(cos β)的大小关系是.解:由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),所以函数f(x)是周期函数,且2是它的一个周期.因为函数f(x)是偶函数且在[-4,-3]上是增函数,所以函数f(x)在[0,1]上是增函数.又α,β是锐角三角形的两个内角,则有α+β>,即>α>-β>0,因为y=sin x在上为增函数,所以sin α>sin=cos β,且sin α∈[0,1],cos β∈[0,1],所以f(sin α)>f(cos β).
相关试卷
这是一份人教B版 (2019)必修 第三册7.3.2 正弦型函数的性质与图像精练,共6页。试卷主要包含了某同学给出了以下结论等内容,欢迎下载使用。
这是一份人教B版 (2019)必修 第三册7.3.2 正弦型函数的性质与图像课时训练,共6页。
这是一份高中数学人教B版 (2019)必修 第三册第七章 三角函数7.3 三角函数的性质与图像7.3.2 正弦型函数的性质与图像一课一练,共5页。试卷主要包含了在下列函数中同时满足,若tan x≥0,则,函数f=lg )等内容,欢迎下载使用。