|课件下载
搜索
    上传资料 赚现金
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)
    立即下载
    加入资料篮
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)01
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)02
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)03
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)04
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)05
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)06
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)07
    13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)08
    还剩19页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学八年级上册13.4课题学习 最短路径问题图文ppt课件

    展开
    这是一份数学八年级上册13.4课题学习 最短路径问题图文ppt课件,共27页。PPT课件主要包含了两点之间线段最短,选择路线②,你能证明这个结论吗等内容,欢迎下载使用。

    1.利用轴对称解决简单的最短路径问题.2.能够利用轴对称、平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.
    如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?
    问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?
    考点一 将军饮马问题
    如图,A,B在直线L的两侧,在L上求一点C,使得CA+CB最小。
    解析:连接A,B两点,交直线l于点C,则点C即为所求的位置,可以使得AC+BC的值最小.依据:两点之间,线段最短.
    那A、B两点在直线l的同一侧呢?如何确定点C呢?
    你能利用两点分别在直线两侧的解题思路,来解决两点在直线同一侧的问题吗?
    分析:如果我们能够把点B转移到直线l的另外一侧B′,同时使得对直线上任意一点C,满足BC=B′C,就可以将问题转化为“两点分别在直线两侧的情况”.那么在直线l上使得满足BC=B′C的点应该怎么找呢?
    如图,作出点B关于直线l的对称点B′,利用轴对称的性质可知:对于直线l上的任意一点C均满足BC=B′C.此时,问题转化为:当点C在直线l的什么位置时,AB+B′C的值最小?
    容易得出:连接AB′交直线l于点C,则点C即为所求.
    证明:在直线l上任意取一点C′(不与点C重合),连接AC′,BC′,B′C′. 由轴对称的性质可得:BC=B′C,BC′=B′C′, 则AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′. 在△AB′C′中,AB′ 如图,在平面直角坐标系中,点 A(-2,4),B(4,2),在 x 轴上取一点 P,使点 P 到点 A 和点 B 的距离之和最小,则点 P 的坐标是(  ) A. (-2,0)   B. (4,0)   C. (2,0)   D. (0,0)
    问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可以使得从A到B的路径AMNB最短?(假定河是平行的直线,桥要与河垂直)
    考点二 造桥选址问题
    这是个实际问题,你能用自己理解的语言描述一下吗?
    如图所示:将河的两岸看成两条平行线a和b,N为直线b上的一个动点,MN垂直于直线b,交直线a于点M.当点N在什么位置的时候,AM+MN+NB的值最小?
    (1)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.问题可转化为:当点N在直线b的什么位置时,AM+NB最小?
    (2)如图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.
    问题转化为:当点N在直线b的什么位置时,A′N+NB最小?
    (3)如图,在连接A′,B两点的线中,线段A′B最短.因此,线段A′B与直线b的交点N的位置即为所求.
    你能证明此时AM+MN+NB最小吗?
    在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+M′N′+N′B.
    证明:在△A′N′B中, ∵A′B<A′N′+BN′, ∴A′N+BN+MN<AM′+BN′+M′N′. ∴AM+MN+BN<AM′+M′N′+BN′. 即AM+MN+BN最小.
    考点三 两点一线型问题
    如图,在直线l1和直线l2上分别找到点M,N,使得△PMN的周长最小.
    作法:过点P分别作关于直线l1,l2的对称点P1,P2,连接P1P2分别交直线l1,l2于点M,N,则点M,N即为所求.
    解析:通过轴对称的原理,把周长最小值转化为两点间距离最短的问题.△PMN周长的最小值为PM+MN+PN=P1P2.
    考点四 两点两线型问题
    如图,在直线l1和直线l2上分别找到点M,N,使得四边形PQMN的周长最小.
    作法:分别作点P,Q关于直线l1,l2的对称点P1,Q1,连接P1Q1分别交直线l1,l2于点M,N,则点M,N即为所求.
    解析:通过轴对称把周长最小问题转化为两点间距离最短问题,四边形PMNQ的周长的最小值为PM+MN+NQ+QP=P1Q1+PQ,依据的是两点之间,线段最短.
    如图,在等腰Rt△ABC中,D是BC边的中点,E是AB边上的一动点,要使EC+ED最小,请找点E的位置.
    解:如图所示,作点D关于线段AB的对称点D′,连接CD′交线段AB于点E,则点E即为所求,也就是使得EC+ED最小的位置.
    如图,牧童在A处放牛,家在B处,A,B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD中点距离为600,则牧童从A处把牛牵到河边饮水再回家,最短距离是多少?
    解:∵AC⊥CD,BD⊥CD, ∴∠ACD=∠BDC=∠A′CD=90°. ∵A′C=AC=BD, 在△A′CE和△BDE中, ∠A′CE=∠BDE, ∠A′EC=∠BED, A′C=BD, ∴△A′CE≌△BDE(AAS), ∴CE=DE,A′E=BE. ∴点E是CD的中点. ∴AE=600,则AE+BE=A′E+BE=1200.
    2. 解决最短路径问题的方法:借助轴对称或平移的知识,化折为直,利用“两点之间,线段最短”或“垂线段最短”来求线段和的最小值.
    1. 最短路径问题的类型:(1)两点一线型的线段和最小值问题;(2)两线一点型线段和最小值问题;(3)两点两线型的线段和最小值问题;(4)造桥选址问题.
    某中学八(2)班举行文艺晚会,如图所示,OA,OB分别表示桌面,其中OA桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后回到C处,请你帮他设计一条行走路线,使其所走的路程最短.
    解析:(1)如图所示,作点C关于OA的对称点C1;(2)作点C关于OB的对称点C2;(3)连接C1C2,分别交OA,OB于点D,E,连接CD,CE.所以先到点D处拿橘子,再到点E处拿糖果,最后回到点C处,按照这样的路线所走的路程最短.
    相关课件

    初中人教版13.4课题学习 最短路径问题课前预习课件ppt: 这是一份初中人教版13.4课题学习 最短路径问题课前预习课件ppt,共16页。

    数学八年级上册13.4课题学习 最短路径问题试讲课教学课件ppt: 这是一份数学八年级上册13.4课题学习 最短路径问题试讲课教学课件ppt,共16页。PPT课件主要包含了将军饮马问题等内容,欢迎下载使用。

    2021学年13.4课题学习 最短路径问题教学ppt课件: 这是一份2021学年13.4课题学习 最短路径问题教学ppt课件,共19页。PPT课件主要包含了导入--原题再现,题目解析,变式训练,中考链接,拓展提升,分析讲解,做对称,问题剖析,将军饮马的12种模型,最短路径--小结等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        13.4课题学习-最短路径问题-2022-2023学年八年级数学上学期同步精品课件(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map