2022年吉林省长春市第一五七中学中考数学最后冲刺浓缩精华卷含解析
展开
这是一份2022年吉林省长春市第一五七中学中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列方程中,没有实数根的是,一组数据,计算36÷,下列各式正确的是,的平方根是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某射手在同一条件下进行射击,结果如下表所示:
射击次数(n)
10
20
50
100
200
500
……
击中靶心次数(m)
8
19
44
92
178
451
……
击中靶心频率()
0.80
0.95
0.88
0.92
0.89
0.90
……
由此表推断这个射手射击1次,击中靶心的概率是( )
A.0.6 B.0.7 C.0.8 D.0.9
2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )
A. B. C. D.
3.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是
A. B. C. D.
4.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为( )
A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)
5.下列方程中,没有实数根的是( )
A. B.
C. D.
6.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2 B.3 C.5 D.7
7.计算36÷(﹣6)的结果等于( )
A.﹣6 B.﹣9 C.﹣30 D.6
8.下列各式正确的是( )
A. B.
C. D.
9.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是( )
A.15° B.30° C.45° D.60°
10.的平方根是( )
A.2 B. C.±2 D.±
11.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
12.下列各数3.1415926,,,,,中,无理数有( )
A.2个 B.3个 C.4个 D.5个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)AC的长等于_____;
(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明)_____.
14.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.
15.分解因式:4ax2-ay2=________________.
16.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.
17.不等式组的解集是__.
18.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)4月9日上午8时,2017 徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.
20.(6分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
译文为:
现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
请解答上述问题.
21.(6分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
22.(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
23.(8分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
24.(10分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:
节目代号
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
喜爱人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生的总数为 人,统计表中m的值为 .扇形统计图中n的值为 ;
(2)被调查学生中,最喜爱电视节目的“众数” ;
(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.
25.(10分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.
26.(12分)先化简,再求值:,其中m是方程的根.
27.(12分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.
【详解】
依题意得击中靶心频率为0.90,
估计这名射手射击一次,击中靶心的概率约为0.90.
故选:D.
【点睛】
此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.
2、C
【解析】
试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.
3、D
【解析】
本题主要考查二次函数的解析式
【详解】
解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
故选D.
【点睛】
本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
4、A
【解析】
分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).
详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),
∴点O是AC的中点,
∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
∴BD经过点O,
∵B的坐标为(﹣2,﹣2),
∴D的坐标为(2,2),
故选A.
点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
5、B
【解析】
分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
【详解】
解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
故选:B.
【点睛】
本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
6、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
7、A
【解析】
分析:根据有理数的除法法则计算可得.
详解:31÷(﹣1)=﹣(31÷1)=﹣1.
故选A.
点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.
8、A
【解析】
∵,则B错;,则C;,则D错,故选A.
9、B
【解析】
只要证明△OCB是等边三角形,可得∠CDB=∠COB即可解决问题.
【详解】
如图,连接OC,
∵AB=14,BC=1,
∴OB=OC=BC=1,
∴△OCB是等边三角形,
∴∠COB=60°,
∴∠CDB=∠COB=30°,
故选B.
【点睛】
本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.
10、D
【解析】
先化简,然后再根据平方根的定义求解即可.
【详解】
∵=2,2的平方根是±,
∴的平方根是±.
故选D.
【点睛】
本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.
11、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
12、B
【解析】
根据无理数的定义即可判定求解.
【详解】
在3.1415926,,,,,中,
,3.1415926,是有理数,
,,是无理数,共有3个,
故选:B.
【点睛】
本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、5 见解析.
【解析】
(1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.
【详解】
(1)AC=;
(2)如图,连接格点M和N,由图可知:
AB=AM=4,
BC=AN=,
AC=MN=,
∴△ABC≌△MAN,
∴∠AMN=∠BAC,
∴∠MAD+∠CAB=∠MAD+∠AMN=90°,
∴MN⊥AC,
易解得△MAN以MN为底时的高为,
∵AB2=AD•AC,
∴AD=AB2÷AC=,
综上可知,MN与AC的交点即为所求D点.
【点睛】
本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D点的思路.
14、≤M≤6
【解析】
把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围.
【详解】
由得:
即 所以
由得:
即 所以
∴
∴不等式两边同时乘以−2得:
,即
两边同时加上2得:即
∵
∴
∴
则M的取值范围是≤M≤6.
故答案为:≤M≤6.
【点睛】
此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.
15、a(2x+y)(2x-y)
【解析】
首先提取公因式a,再利用平方差进行分解即可.
【详解】
原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案为a(2x+y)(2x-y).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
16、10%
【解析】
设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.
【详解】
设平均每次上调的百分率是x,
依题意得,
解得:,(不合题意,舍去).
答:平均每次上调的百分率为10%.
故答案是:10%.
【点睛】
此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
17、2≤x<1
【解析】
分别解两个不等式得到x<1和x≥2,然后根据大小小大中间找确定不等数组的解集.
【详解】
解:,
解①得x<1,
解②得x≥2,
所以不等式组的解集为2≤x<1.
故答案为2≤x<1.
【点睛】
本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
18、240.
【解析】
试题分析:∠1+∠2=180°+60°=240°.
考点:1.三角形的外角性质;2.三角形内角和定理.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、今年妹妹6岁,哥哥10岁.
【解析】
试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.
试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,
根据题意得:
解得: .
答:今年妹妹6岁,哥哥10岁.
考点:二元一次方程组的应用.
20、共有7人,这个物品的价格是53元.
【解析】
根据题意,找出等量关系,列出一元一次方程.
【详解】
解:设共有x人,这个物品的价格是y元,
解得
答:共有7人,这个物品的价格是53元.
【点睛】
本题考查了二元一次方程的应用.
21、(1)见解析;(1)30°或150°,的长最大值为,此时.
【解析】
(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;
(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;
②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此时α=315°.
【详解】
(1)如图1,延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠GAO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(1)①在旋转过程中,∠OAG′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=OG=OG′,
∴在Rt△OAG′中,sin∠AG′O==,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°∘,
即α=30°;
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,
∴α=180°−30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=,
∵OG=1OD,
∴OG′=OG=,
∴OF′=1,
∴AF′=AO+OF′=+1,
∵∠COE′=45°,
∴此时α=315°.
【点睛】
本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.
22、原计划每天种树40棵.
【解析】
设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.
【详解】
设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得
−=5,
解得:x=40,
经检验,x=40是原方程的解.
答:原计划每天种树40棵.
23、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.
24、(1)150;45,36, (2)娱乐 (3)1
【解析】
(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;
(2)根据众数的定义求解可得;
(3)用总人数乘以样本中喜爱新闻节目的人数所占比例.
【详解】
解:(1)被调查的学生总数为30÷20%=150(人),
m=150−(12+30+54+9)=45,
n%=×100%=36%,即n=36,
故答案为150,45,36;
(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,
∴被调查学生中,最喜爱电视节目的“众数”为娱乐,
故答案为娱乐;
(3)估计该校最喜爱新闻节目的学生人数为2000×=1.
【点睛】
本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
25、证明过程见解析
【解析】
要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.
【详解】
∵BD⊥AC于点D,CE⊥AB于点E,
∴∠ADB=∠AEC=90°,
在△ADB和△AEC中,
∴△ADB≌△AEC(ASA)
∴AB=AC,
又∵AD=AE,
∴BE=CD.
考点:全等三角形的判定与性质.
26、原式=.
∵m是方程的根.∴,即,∴原式=.
【解析】
试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可.
试题解析:原式=.
∵m是方程的根.∴,即,∴原式=.
考点:分式的化简求值;一元二次方程的解.
27、(1)证明见解析;(2)4.1.
【解析】
试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
考点:切线的性质.
相关试卷
这是一份吉林省长春市宽城区2022年中考数学最后冲刺浓缩精华卷含解析,共19页。
这是一份吉林省长春市高新区2022年中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了答题时请按要求用笔,二元一次方程组的解为,下列命题中,正确的是等内容,欢迎下载使用。
这是一份2022年吉林省长春市外国语校中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列计算正确的是,下列说法,已知等内容,欢迎下载使用。