2022年济南市天桥区重点中学初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若分式方程无解,则a的值为( )
A.0 B.-1 C.0或-1 D.1或-1
2.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
3.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为( )
A.100° B.80° C.50° D.20°
4.如图所示的图形,是下面哪个正方体的展开图( )
A. B. C. D.
5.下面的几何体中,主视图为圆的是( )
A. B. C. D.
6.如图,矩形OABC有两边在坐标轴上,点D、E分别为AB、BC的中点,反比例函数y=(x<0)的图象经过点D、E.若△BDE的面积为1,则k的值是( )
A.﹣8 B.﹣4 C.4 D.8
7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为( )
A. B. C. D.
8.如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为( )
A.2cm2 B.3cm2 C.4cm2 D.5cm2
9.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )
A.先向下移动1格,再向左移动1格 B.先向下移动1格,再向左移动2格
C.先向下移动2格,再向左移动1格 D.先向下移动2格,再向左移动2格
10.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( )
A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16
二、填空题(共7小题,每小题3分,满分21分)
11.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是( )
A.﹣1 B.0 C.1 D.2
12.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.
13.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________
14.点(1,–2)关于坐标原点 O 的对称点坐标是_____.
15.若3,a,4,5的众数是4,则这组数据的平均数是_____.
16.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.
17.已知a+ =3,则的值是_____.
三、解答题(共7小题,满分69分)
18.(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
19.(5分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
20.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
21.(10分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC= °;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.
22.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤
每件的售价/元
每件的成本/元
甲
50
乙
60
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
23.(12分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 °;
(2)请补全条形统计图;
(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
24.(14分)先化简,再求值:
÷(a﹣),其中a=3tan30°+1,b=cos45°.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
2、B
【解析】
解:3400000=.
故选B.
3、B
【解析】
解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.
点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.
4、D
【解析】
根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
【详解】
A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
故选D.
【点睛】
本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
5、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
6、B
【解析】
根据反比例函数的图象和性质结合矩形和三角形面积解答.
【详解】
解:作,连接.
∵四边形AHEB,四边形ECOH都是矩形,BE=EC,
∴
故选B.
【点睛】
此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键.
7、C
【解析】
试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.
故选C
8、C
【解析】
延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.
【详解】
延长AP交BC于E.
∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.
在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCES△ABC=4cm1.
故选C.
【点睛】
本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCES△ABC.
9、C
【解析】
根据题意,结合图形,由平移的概念求解.
【详解】
由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.
【点睛】
本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.
10、C
【解析】
试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.
∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,
∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、D
【解析】
根据根的判别式得到关于a的方程,求解后可得到答案.
【详解】
关于x的方程有两个不相等的实数根,
则
解得:
满足条件的最小整数的值为2.
故选D.
【点睛】
本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.
12、2
【解析】
解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,
∵AB=AC,点E为BD的中点,且AD=AB,
∴设BE=DE=x,则AD=AF=1x.
∵DG⊥AC,EF⊥AC,
∴DG∥EF,∴,即,解得.
∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.
又∵DF∥BC,∴∠DFG=∠C,
∴Rt△DFG∽Rt△ACH,∴,即,解得.
在Rt△ABH中,由勾股定理,得.
∴.
又∵△ADF∽△ABC,∴,
∴
∴.
故答案为:2.
13、1
【解析】
分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
详解:设D(a,),
∵点D为矩形OABC的AB边的中点,
∴B(2a,),
∴E(2a,),
∵△BDE的面积为1,
∴•a•(-)=1,解得k=1.
故答案为1.
点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
14、(-1,2)
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
A(1,-2)关于原点O的对称点的坐标是(-1,2),
故答案为:(-1,2).
【点睛】
此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
15、4
【解析】
试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.
试题解析:∵3,a,4,5的众数是4,
∴a=4,
∴这组数据的平均数是(3+4+4+5)÷4=4.
考点:1.算术平均数;2.众数.
16、15
【解析】
根据圆的基本性质得出四边形OABC为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.
【详解】
解:∵OABC为平行四边形,OA=OC=OB,
∴四边形OABC为菱形,∠AOB=60°,
∵OD⊥AB,
∴∠BOD=30°,
∴∠BAD=30°÷2=15°.
故答案为:15.
【点睛】
本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC为菱形是解题的关键.
17、7
【解析】
根据完全平方公式可得:原式=.
三、解答题(共7小题,满分69分)
18、(1)(2)
【解析】
试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
试题解析:解:(1).
(2)用表格列出所有可能的结果:
第二次
第一次
红球1
红球2
白球
黑球
红球1
(红球1,红球2)
(红球1,白球)
(红球1,黑球)
红球2
(红球2,红球1)
(红球2,白球)
(红球2,黑球)
白球
(白球,红球1)
(白球,红球2)
(白球,黑球)
黑球
(黑球,红球1)
(黑球,红球2)
(黑球,白球)
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
∴P(两次都摸到红球)==.
考点:概率统计
19、(1)、(2)证明见解析(3)28
【解析】
试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
试题解析:(1)如图1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如图2,延长AD至F,使DF=BE,连接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
AE=AB-BE=12-4=8,
设DF=x,则AD=12-x,
根据(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
解得:x=1.
则DE=4+1=2.
【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
20、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.
【解析】
(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.
(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.
【详解】
(1)设捐款增长率为x,根据题意列方程得:
,
解得x1=0.1,x2=-1.9(不合题意,舍去).
答:捐款增长率为10%.
(2)12100×(1+10%)=13310元.
答:第四天该单位能收到13310元捐款.
21、(1)125;(2)详见解析;(3)45°<α<90°.
【解析】
(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)证明△ABC≌△EDC(AAS)即可求解;
(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.
【详解】
(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案为125;
(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
∴∠ACB=∠ECD,
又BC=DC,由(1)知:∠ABC=∠PDC,
∴△ABC≌△EDC(AAS),
∴AC=CE;
(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.
【点睛】
本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.
22、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0
【详解】
(1)∵甲种T恤进货250件
∴乙种T恤进货量为:400-250=150件
故由题意得,;
(2)①
②;
故.
(3)由题意,,①,,
②,
综上,最大利润为10750元.
【点睛】
本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.
23、(1)60,1°.(2)补图见解析;(3)
【解析】
(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;
(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;
(3)根据题意先画出树状图,再根据概率公式即可得出答案.
【详解】
(1)接受问卷调查的学生共有30÷50%=60(人),
扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=1°,
故答案为60,1.
(2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:
(3)画树状图得:
∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
∴恰好抽到1个男生和1个女生的概率为=.
【点睛】
此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.
24、,
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值.
解:原式=,
当,
原式=.
“点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.
深圳市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份深圳市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了方程等内容,欢迎下载使用。
海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了定义,在直角坐标系中,已知点P,不等式组 的整数解有等内容,欢迎下载使用。
鞍山市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份鞍山市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共16页。试卷主要包含了-sin60°的倒数为,如图图形中是中心对称图形的是,若点P等内容,欢迎下载使用。