2022年江门市重点中学中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
A.圆锥 B.圆柱 C.球 D.正方体
2.下列事件中必然发生的事件是( )
A.一个图形平移后所得的图形与原来的图形不全等
B.不等式的两边同时乘以一个数,结果仍是不等式
C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D.随意翻到一本书的某页,这页的页码一定是偶数
3.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨)
3
4
5
6
7
频数
1
2
5
4﹣x
x
A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
4.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )
A.(1,1) B.(2,1) C.(2,2) D.(3,1)
5.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
6.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是( )
A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2
7.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是( )
A.26°. B.44°. C.46°. D.72°
8.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是( )
A.16cm B.18cm C.20cm D.21cm
9.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为( )
A.4 B.﹣4 C.3 D.﹣3
10.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=_____.
12.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.
13.函数中自变量x的取值范围是___________.
14.若式子有意义,则x的取值范围是 .
15.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).
16.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP=AD. 求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ=BC.已知 AD=1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM=CN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.
18.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别
成绩x分
频数(人数)
第1组
50≤x<60
6
第2组
60≤x<70
8
第3组
70≤x<80
14
第4组
80≤x<90
a
第5组
90≤x<100
10
19.(8分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)
20.(8分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).
21.(8分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)
22.(10分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?
23.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.
24.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.
【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;
B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;
C. 球的主视图只能是圆,故符合题意;
D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,
故选C.
【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.
2、C
【解析】
直接利用随机事件、必然事件、不可能事件分别分析得出答案.
【详解】
A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;
B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;
C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;
D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;
故选C.
【点睛】
此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.
3、B
【解析】
由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
【详解】
∵6吨和7吨的频数之和为4-x+x=4,
∴频数之和为1+2+5+4=12,
则这组数据的中位数为第6、7个数据的平均数,即=5,
∴对于不同的正整数x,中位数不会发生改变,
∵后两组频数和等于4,小于5,
∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
故选B.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
4、B
【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.
【详解】
解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:
∴棋子“炮”的坐标为(2,1),
故答案为:B.
【点睛】
本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
5、C
【解析】
由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
【详解】
解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y轴的负半轴,
∴c<1;故①正确;
②对称轴
∴ ∴b<1;
故②正确;
③根据图示知,二次函数与x轴有两个交点,所以,即,故③错误
④故本选项正确.
正确的有3项
故选C.
【点睛】
本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置.
6、A
【解析】
根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.
【详解】
∵圆锥的轴截面是一个边长为3cm的等边三角形,
∴底面半径=1.5cm,底面周长=3πcm,
∴圆锥的侧面积=×3π×3=4.5πcm2,
故选A.
【点睛】
此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.
7、A
【解析】
先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
【详解】
解:∵图中是正五边形.
∴∠EAB=108°.
∵太阳光线互相平行,∠ABG=46°,
∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
故选A.
【点睛】
此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
8、C
【解析】
试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
考点:平移的性质.
9、A
【解析】
根据一元二次方程根与系数的关系和整体代入思想即可得解.
【详解】
∵x1,x2是关于x的方程x2+bx﹣3=0的两根,
∴x1+x2=﹣b,x1x2=﹣3,
∴x1+x2﹣3x1x2=﹣b+9=5,
解得b=4.
故选A.
【点睛】
本题主要考查一元二次方程的根与系数的关系(韦达定理),
韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.
10、C
【解析】
根据反比例函数的图像性质进行判断.
【详解】
解:∵,电压为定值,
∴I关于R的函数是反比例函数,且图象在第一象限,
故选C.
【点睛】
本题考查反比例函数的图像,掌握图像性质是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、﹣1
【解析】
根据题意可以得到交换函数,由顶点关于x轴对称,从而得到关于b的方程,可以解答本题.
【详解】
由题意函数y=1x1+bx的交换函数为y=bx1+1x.
∵y=1x1+bx=,
y=bx1+1x=,
函数y=1x1+bx与它的交换函数图象顶点关于x轴对称,
∴﹣=﹣且,
解得:b=﹣1.
故答案为﹣1.
【点睛】
本题考查了二次函数的性质.理解交换函数的意义是解题的关键.
12、(2,2).
【解析】
连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.
【详解】
如图,连结OA,
OA==5,
∵B为⊙O内一点,
∴符合要求的点B的坐标(2,2)答案不唯一.
故答案为:(2,2).
【点睛】
考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.
13、x≤2
【解析】
试题解析:根据题意得:
解得:.
14、且
【解析】
∵式子在实数范围内有意义,
∴x+1≥0,且x≠0,
解得:x≥-1且x≠0.
故答案为x≥-1且x≠0.
15、<
【解析】
把点(-1,a)、(-2,b)分别代入抛物线,则有:
a=1-2-3=-4,b=4-4-3=-3,
-4<-3,
所以a 故答案为<.
16、﹣1<x<2
【解析】
根据图象得出取值范围即可.
【详解】
解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
所以当y1>y2时,﹣1<x<2,
故答案为﹣1<x<2
【点睛】
此题考查二次函数与不等式,关键是根据图象得出取值范围.
三、解答题(共8题,共72分)
17、(1)证明见解析(2) (3)
【解析】
(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;
(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;
(3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.
【详解】
(1)在图1中,设AD=BC=a,则有AB=CD=a,
∵四边形ABCD是矩形,
∴∠A=90°,
∵PA=AD=BC=a,
∴PD==a,
∵AB=a,
∴PD=AB;
(2)如图,作点P关于BC的对称点P′,
连接DP′交BC于点E,此时△PDE的周长最小,
设AD=PA=BC=a,则有AB=CD=a,
∵BP=AB-PA,
∴BP′=BP=a-a,
∵BP′∥CD,
∴ ;
(3)GH=,理由为:
由(2)可知BF=BP=AB-AP,
∵AP=AD,
∴BF=AB-AD,
∵BQ=BC,
∴AQ=AB-BQ=AB-BC,
∵BC=AD,
∴AQ=AB-AD,
∴BF=AQ,
∴QF=BQ+BF=BQ+AQ=AB,
∵AB=CD,
∴QF=CD,
∵QM=CN,
∴QF-QM=CD-CN,即MF=DN,
∵MF∥DN,
∴∠NFH=∠NDH,
在△MFH和△NDH中,
,
∴△MFH≌△NDH(AAS),
∴FH=DH,
∵G为CF的中点,
∴GH是△CFD的中位线,
∴GH=CD=×2=.
【点睛】
此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.
18、(1)①12,3. ②详见解析.(2).
【解析】
分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;
(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;
(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
详解:(1)①a=50﹣(6+8+14+10)=12,
中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,
所以中位数落在第3组,
故答案为12,3;
②如图,
(2)×100%=44%,
答:本次测试的优秀率是44%;
(3)设小明和小强分别为A、B,另外两名学生为:C、D,
则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).
所以小明和小强分在一起的概率为:.
点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.
19、公路的宽为20.5米.
【解析】
作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.
【详解】
解:如图,过点C作CD⊥AE于点D,
设公路的宽CD=x米,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,∵∠CAE=30°,
∴tan∠CAD==,即=,
解得:x=≈20.5(米),
答:公路的宽为20.5米.
【点睛】
本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.
20、(1)1;(2).
【解析】
(1)由平行线截线段成比例求得AE的长度;
(2)利用平面向量的三角形法则解答.
【详解】
(1)如图,
∵DE∥BC,且DE=BC,
∴.
又AC=6,
∴AE=1.
(2)∵,,
∴.
又DE∥BC,DE=BC,
∴
【点睛】
考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.
21、AD=38.28米.
【解析】
过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.
【详解】
过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,
由题意知,AD⊥CD
∴四边形BFDE为矩形
∴BF=ED
在Rt△ABE中,AE=AB•cos∠EAB
在Rt△BCF中,BF=BC•cos∠FBC
∴AD=AE+BF=20•cos60°+40•cos45°
=20×+40×=10+20
=10+20×1.414
=38.28(米).
即AD=38.28米.
【点睛】
解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
22、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.
【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;
(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;
(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.
【详解】
解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,
总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)
=200x+8600(0≤x≤6).
(2)200x+8600≤9000
解得x≤2
共有3种调运方案
方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;
方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;
方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;
(3)w=200x+8600
k>0,
所以当x=0时,总运费最低.
也就是从B市调运到C市0台,D市6台;
从A市调运到C市10台,D市2台;最低运费是8600元.
【点睛】
本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
23、(1)详见解析;(2)BD=9.6.
【解析】
试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
试题解析:(1)证明:如下图所示,连接OB.
∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
(2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
∵ ,∴ ,
∴.
点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
24、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).
【解析】
试题分析:利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.
试题解析:(1)△A1BC1如图所示.
(2)△A2B2C2如图所示,点C2的坐标为(-6,4).
2022年德宏市重点中学中考押题数学预测卷含解析: 这是一份2022年德宏市重点中学中考押题数学预测卷含解析,共23页。试卷主要包含了下列运算正确的是,计算4×的结果等于,下列命题是真命题的是,cs30°=等内容,欢迎下载使用。
2022届福州市重点中学中考数学押题卷含解析: 这是一份2022届福州市重点中学中考数学押题卷含解析,共21页。试卷主要包含了下列计算正确的是,已知A样本的数据如下等内容,欢迎下载使用。
2021-2022学年宁德市重点中学中考数学押题卷含解析: 这是一份2021-2022学年宁德市重点中学中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,计算正确的是,下列运算正确的是等内容,欢迎下载使用。