2022年吉林省辽源市中考冲刺卷数学试题含解析
展开
这是一份2022年吉林省辽源市中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )
A. B. C. D.
2.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )
A.73 B.81 C.91 D.109
3.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是( )
A.11 B.8 C.7 D.5
4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是( )
A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE
5.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( )
A. B. C. D.不能确定
6.如图,已知⊙O的半径为5,AB是⊙O的弦,AB=8,Q为AB中点,P是圆上的一点(不与A、B重合),连接PQ,则PQ的最小值为( )
A.1 B.2 C.3 D.8
7.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是( )
A.﹣10 B.﹣5 C.5 D.10
8.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
9.不等式的解集在数轴上表示正确的是( )
A. B. C. D.
10.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )
A.2人 B.16人
C.20人 D.40人
二、填空题(本大题共6个小题,每小题3分,共18分)
11.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.
12.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.
13.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 (用含k的代数式表示).
14.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是_____.
15.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.
16.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.
三、解答题(共8题,共72分)
17.(8分)如图,内接于,,的延长线交于点.
(1)求证:平分;
(2)若,,求和的长.
18.(8分)已知BD平分∠ABF,且交AE于点D.
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
19.(8分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:
(1)求被调查学生的人数,并将条形统计图补充完整;
(2)求扇形统计图中的A等对应的扇形圆心角的度数;
(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?
20.(8分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
21.(8分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.
22.(10分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
(1)本次调查的学生有多少人?
(2)补全上面的条形统计图;
(3)扇形统计图中C对应的中心角度数是 ;
(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
23.(12分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.
24.一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.
(1)请您列表或画树状图列举出所有可能出现的结果;
(2)请你判断这个游戏对他们是否公平并说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),
∴当他忘记了末位数字时,要一次能打开的概率是.
故选A.
2、C
【解析】
试题解析:第①个图形中一共有3个菱形,3=12+2;
第②个图形中共有7个菱形,7=22+3;
第③个图形中共有13个菱形,13=32+4;
…,
第n个图形中菱形的个数为:n2+n+1;
第⑨个图形中菱形的个数92+9+1=1.
故选C.
考点:图形的变化规律.
3、B
【解析】
根据等量关系,即(经过的路程﹣3)×1.6+起步价2元≤1.列出不等式求解.
【详解】
可设此人从甲地到乙地经过的路程为xkm,
根据题意可知:(x﹣3)×1.6+2≤1,
解得:x≤2.
即此人从甲地到乙地经过的路程最多为2km.
故选B.
【点睛】
考查了一元一次方程的应用.关键是掌握正确理解题意,找出题目中的数量关系.
4、A
【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.
【详解】
∵EB=CF,
∴EB+BF=CF+BF,即EF=BC,
又∵∠A=∠D,
A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.
B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.
C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.
D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,
故选A.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
5、B
【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.
【详解】
∵AB=CD,
∴AC+BC=BC+BD,
即AC=BD,
又∵BC=2AC,
∴BC=2BD,
∴CD=3BD=3AC.
故选B.
【点睛】
本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.
6、B
【解析】
连接OP、OA,根据垂径定理求出AQ,根据勾股定理求出OQ,计算即可.
【详解】
解:
由题意得,当点P为劣弧AB的中点时,PQ最小,
连接OP、OA,
由垂径定理得,点Q在OP上,AQ=AB=4,
在Rt△AOB中,OQ==3,
∴PQ=OP-OQ=2,
故选:B.
【点睛】
本题考查的是垂径定理、勾股定理,掌握垂径定理的推论是解题的关键.
7、A
【解析】
作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
【详解】
作AE⊥BC于E,如图,
∵四边形ABCD为平行四边形,
∴AD∥x轴,
∴四边形ADOE为矩形,
∴S平行四边形ABCD=S矩形ADOE,
而S矩形ADOE=|−k|,
∴|−k|=1,
∵k<0,
∴k=−1.
故选A.
【点睛】
本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
8、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
9、B
【解析】
根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可.
【详解】
解:解:移项得,
x≤3-2,
合并得,
x≤1;
在数轴上表示应包括1和它左边的部分,如下:
;
故选:B.
【点睛】
本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示.
10、C
【解析】
先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
【详解】
400×人.
故选C.
【点睛】
考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、0.8 0
【解析】
根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
【详解】
平均数=(−2+0−1+2+5)÷5=0.8;
把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,
故这组数据的中位数是:0.
故答案为0.8;0.
【点睛】
本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.
12、
【解析】
分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.
详解:延长AE交DF于G,如图, ∵AB=5,AE=3,BE=4,
∴△ABE是直角三角形,
同理可得△DFC是直角三角形,可得△AGD是直角三角形,
∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,
同理可得:∠ADG=∠BAE.
在△AGD和△BAE中,∵,
∴△AGD≌△BAE(ASA),
∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,
同理可得:GF=1,∴EF=.
故答案为.
点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.
13、。
【解析】
试题分析:如图,连接EG,
∵,∴设,则。
∵点E是边CD的中点,∴。
∵△ADE沿AE折叠后得到△AFE,
∴。
易证△EFG≌△ECG(HL),∴。∴。
∴在Rt△ABG中,由勾股定理得: ,即。
∴。
∴(只取正值)。
∴。
14、11≤x<1
【解析】
根据对于实数x我们规定[x]不大于x最大整数,可得答案.
【详解】
由[]=5,得:
,
解得11≤x<1,
故答案是:11≤x<1.
【点睛】
考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.
15、61
【解析】
分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
如图②:AM2=AC2+CM2=92+4=85;
如图:AM2=52+(4+2)2=61.
∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
故答案为:61.
点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.
16、60°.
【解析】
先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.
【详解】
∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,
∴∠A=∠B=60°.
∴∠C=180°-∠A-∠B=180°-60°-60°=60°.
故答案为60°.
【点睛】
本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.
三、解答题(共8题,共72分)
17、 (1)证明见解析;(2)AC= , CD= ,
【解析】
分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
本题解析:
解:(1)证明:延长AO交BC于H,连接BO.
∵AB=AC,OB=OC,
∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
又∵AB=AC,∴AO平分∠BAC.
(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
∴∠EBC=90°,BC⊥BE.
∵∠E=∠BAC,∴sinE=sin∠BAC.
∴=.∴CE=BC=10.
∴BE==8,OA=OE=CE=5.
∵AH⊥BC,∴BE∥OA.
∴=,即=,
解得OD=.∴CD=5+=.
∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
在Rt△ACH中,AC===3.
点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
18、 (1)见解析:(2)见解析.
【解析】
试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
试题解析:(1)如图所示:
(2)如图:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
考点:1.菱形的判定;2.作图—基本作图.
19、(1)图见解析;(2)126°;(3)1.
【解析】
(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;
(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;
(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.
【详解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
将条形统计图补充完整,如图所示.
(2)42÷120×100%×360°=126°.
答:扇形统计图中的A等对应的扇形圆心角为126°.
(3)1500×=1(人).
答:该校学生对政策内容了解程度达到A等的学生有1人.
【点睛】
本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
20、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
21、576名
【解析】
试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.
试题解析:
本次调查的学生有:32÷16%=200(名),
体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),
补全的条形统计图如右图所示,
我校初三年级体重介于47kg至53kg的学生大约有:1800×=576(名),
答:我校初三年级体重介于47kg至53kg的学生大约有576名.
22、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
【解析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
【详解】
解:(1)本次调查的学生有30÷20%=150人;
(2)C类别人数为150﹣(30+45+15)=60人,
补全条形图如下:
(3)扇形统计图中C对应的中心角度数是360°×=144°
故答案为144°
(4)600×()=300(人),
答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
23、(1)详见解析;(2).
【解析】
∵四边形ABCD是矩形,
∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
∴∠EAD=∠AFB,
∵DE⊥AF,
∴∠AED=90°,
在△ADE和△FAB中,
∴△ADE≌△FAB(AAS),
∴AE=BF=1
∵BF=FC=1
∴BC=AD=2
故在Rt△ADE中,∠ADE=30°,DE=,
∴的长==.
24、(1)36(2)不公平
【解析】
(1)根据题意列表即可;
(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.
【详解】
(1)列表得:
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36种等可能的结果,
(2)这个游戏对他们不公平,
理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,
而P(两次掷的骰子的点数相同)
P(两次掷的骰子的点数的和是6)=
∴不公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等
就公平,否则就不公平.
相关试卷
这是一份吉林省辽源市2021-2022学年中考三模数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,计算2a2+3a2的结果是,﹣的绝对值是等内容,欢迎下载使用。
这是一份2022年吉林省辽源市中考数学仿真试卷含解析,共20页。
这是一份2022届吉林省农安县合隆镇中学中考冲刺卷数学试题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列四个实数中是无理数的是等内容,欢迎下载使用。