所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
内蒙古包头市三年(2020-2022)中考数学真题分类汇编-02填空题
展开
这是一份内蒙古包头市三年(2020-2022)中考数学真题分类汇编-02填空题,共17页。试卷主要包含了因式分解,计算,化简,2= ,分式方程+=1的解是 等内容,欢迎下载使用。
内蒙古包头市三年(2020-2022)中考数学真题分类汇编-02填空题
一.立方根(共1小题)
1.(2021•包头)一个正数a的两个平方根是2b﹣1和b+4,则a+b的立方根为 .
二.整式的加减(共1小题)
2.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为 .
三.提公因式法与公式法的综合运用(共1小题)
3.(2021•包头)因式分解:+ax+a= .
四.分式的加减法(共1小题)
4.(2022•包头)计算:+= .
五.分式的混合运算(共1小题)
5.(2021•包头)化简:= .
六.二次根式有意义的条件(共1小题)
6.(2022•包头)若代数式+在实数范围内有意义,则x的取值范围是 .
七.二次根式的混合运算(共1小题)
7.(2020•包头)计算:(+)(﹣)2= .
八.解分式方程(共1小题)
8.(2020•包头)分式方程+=1的解是 .
九.函数自变量的取值范围(共1小题)
9.(2020•包头)函数y=中,自变量x的取值范围是 .
一十.反比例函数图象上点的坐标特征(共1小题)
10.(2022•包头)如图,反比例函数y=(k>0)在第一象限的图象上有A(1,6),B(3,b)两点,直线AB与x轴相交于点C,D是线段OA上一点.若AD•BC=AB•DO,连接CD,记△ADC,△DOC的面积分别为S1,S2,则S1﹣S2的值为 .
一十一.抛物线与x轴的交点(共2小题)
11.(2021•包头)已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为 .
12.(2020•包头)在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为 .
一十二.全等三角形的判定与性质(共1小题)
13.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,D为AB边上一点,且BD=BC,连接CD,以点D为圆心,DC的长为半径作弧,交BC于点E(异于点C),连接DE,则BE的长为 .
一十三.平行四边形的性质(共1小题)
14.(2020•包头)如图,在▱ABCD中,AB=2,∠ABC的平分线与∠BCD的平分线交于点E,若点E恰好在边AD上,则BE2+CE2的值为 .
一十四.矩形的性质(共1小题)
15.(2020•包头)如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE.若∠ADB=30°,则tan∠DEC的值为 .
一十五.正方形的性质(共2小题)
16.(2021•包头)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为 .
17.(2020•包头)如图,在正方形ABCD中,E是对角线BD上一点,AE的延长线交CD于点F,连接CE.若∠BAE=56°,则∠CEF= °.
一十六.切线的性质(共1小题)
18.(2021•包头)如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD的周长为 .
一十七.弧长的计算(共1小题)
19.(2022•包头)如图,已知⊙O的半径为2,AB是⊙O的弦.若AB=2,则劣弧的长为 .
一十八.相似三角形的判定与性质(共1小题)
20.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为 .
一十九.加权平均数(共1小题)
21.(2022•包头)某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:
候选人
通识知识
专业知识
实践能力
甲
80
90
85
乙
80
85
90
根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是 .(填“甲”或“乙”)
二十.方差(共1小题)
22.(2021•包头)某人5次射击命中的环数分别为5,10,7,x,10.若这组数据的中位数为8,则这组数据的方差为 .
二十一.列表法与树状图法(共1小题)
23.(2020•包头)一个不透明的盒子里放置三张完全相同的卡片,分别标有数字1,2,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为 .
参考答案与试题解析
一.立方根(共1小题)
1.(2021•包头)一个正数a的两个平方根是2b﹣1和b+4,则a+b的立方根为 2 .
【解答】解:∵一个正数a的两个平方根是2b﹣1和b+4,
∴2b﹣1+b+4=0,
∴b=﹣1.
∴b+4=﹣1+4=3,
∴a=9.
∴a+b=9+(﹣1)=8,
∵8的立方根为2,
∴a+b的立方根为2.
故答案为:2.
二.整式的加减(共1小题)
2.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为 y2﹣xy+3 .
【解答】解:由题意得,这个多项式为:
(2xy+3y2﹣5)﹣(3xy+2y2﹣8)
=2xy+3y2﹣5﹣3xy﹣2y2+8
=y2﹣xy+3.
故答案为:y2﹣xy+3.
三.提公因式法与公式法的综合运用(共1小题)
3.(2021•包头)因式分解:+ax+a= a(x+1)2 .
【解答】解:原式=a(x2+x+1)=a(x+1)2,
故答案为:a(x+1)2.
四.分式的加减法(共1小题)
4.(2022•包头)计算:+= a﹣b .
【解答】解:原式=
=
=a﹣b,
故答案为:a﹣b.
五.分式的混合运算(共1小题)
5.(2021•包头)化简:= 1 .
【解答】解:原式=•(m+2)
=
=1.
故答案为1.
六.二次根式有意义的条件(共1小题)
6.(2022•包头)若代数式+在实数范围内有意义,则x的取值范围是 x≥﹣1且x≠0 .
【解答】解:根据题意,得,
解得x≥﹣1且x≠0,
故答案为:x≥﹣1且x≠0.
七.二次根式的混合运算(共1小题)
7.(2020•包头)计算:(+)(﹣)2= ﹣ .
【解答】解:原式=[(+)(﹣)](﹣)
=(3﹣2)(﹣)
=﹣.
故答案为:﹣.
八.解分式方程(共1小题)
8.(2020•包头)分式方程+=1的解是 x= .
【解答】解:分式方程+=1,
去分母得:3﹣x﹣x=x﹣2,
解得:x=,
经检验x=是分式方程的解.
故答案为:x=.
九.函数自变量的取值范围(共1小题)
9.(2020•包头)函数y=中,自变量x的取值范围是 x≠3 .
【解答】解:由题意得,x﹣3≠0,
解得x≠3.
故答案为:x≠3.
一十.反比例函数图象上点的坐标特征(共1小题)
10.(2022•包头)如图,反比例函数y=(k>0)在第一象限的图象上有A(1,6),B(3,b)两点,直线AB与x轴相交于点C,D是线段OA上一点.若AD•BC=AB•DO,连接CD,记△ADC,△DOC的面积分别为S1,S2,则S1﹣S2的值为 4 .
【解答】解:∵反比例函数y=(k>0)在第一象限的图象上有A(1,6),B(3,b)两点,
∴1×6=3b,
∴b=2,
∴B(3,2),
设直线AB的解析式为y=mx+n,
,
解得:,
∴y=﹣2x+8,
令y=0,
﹣2x+8=0,
解得:x=4,
∴C(4,0),
∵AB==2,
BC==,
AD•BC=AB•DO,
∴AD•=2•DO,
∴AD=2DO,
∴S1=2S2,
∴S1﹣S2=S2,
∵S1+S2=S△AOC,
∴S1﹣S2=S2=S△AOC=××4×6=4.
故答案为:4.
一十一.抛物线与x轴的交点(共2小题)
11.(2021•包头)已知抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C,点D(4,y)在抛物线上,E是该抛物线对称轴上一动点,当BE+DE的值最小时,△ACE的面积为 4 .
【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
抛物线的对称轴为直线x=1,
当x=0时,y=x2﹣2x﹣3=﹣3,则C(0,﹣3),
当x=4时,y=x2﹣2x﹣3=5,则D(4,5),
连接AD交直线x=1于E,交y轴于F点,如图,
∵BE+DE=EA+DE=AD,
∴此时BE+DE的值最小,
设直线AD的解析式为y=kx+b,
把A(﹣1,0),D(4,5)代入得,解得,
∴直线AD的解析式为y=x+1,
当x=1时,y=x+1=2,则E(1,2),
当x=0时,y=x+1=1,则F(0,1),
∴S△ACE=S△ACF+S△ECF=×4×1+×4×1=4.
故答案为4.
12.(2020•包头)在平面直角坐标系中,已知A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y=x2+bx+1向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为 4 .
【解答】解:∵点A(﹣1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,
∴,
解得,b=﹣4,
∴抛物线解析式为y=x2﹣4x+1=(x﹣2)2﹣3,
∵将抛物线y=x2+bx+1向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,
∴n的最小值是4,
故答案为:4.
一十二.全等三角形的判定与性质(共1小题)
13.(2022•包头)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,D为AB边上一点,且BD=BC,连接CD,以点D为圆心,DC的长为半径作弧,交BC于点E(异于点C),连接DE,则BE的长为 3﹣3 .
【解答】解:∵∠ACB=90°,AC=BC=3,
∴AB=AC=3,∠A=∠B=45°,
∵BD=BC=3,AC=BC,
∴BD=AC,AD=3﹣3.
∵DC=DE,
∴∠DCE=∠DEC.
∵BD=BC,
∴∠DCE=∠CDB,
∴∠CED=∠CDB,
∵∠CDB=∠CDE+∠EDB,∠CED=∠B+∠EDB,
∴∠CDE=∠B=45°.
∴∠ADC+∠EDB=180°﹣∠CDE=135°.
∵∠ADC+∠ACD=180°﹣∠A=135°,
∴∠ACD=∠EDB.
在△ADC和△BED中,
,
∴△ADC≌△BED(SAS).
∴BE=AD=3﹣3.
故答案为:3﹣3.
一十三.平行四边形的性质(共1小题)
14.(2020•包头)如图,在▱ABCD中,AB=2,∠ABC的平分线与∠BCD的平分线交于点E,若点E恰好在边AD上,则BE2+CE2的值为 16 .
【解答】解:∵BE、CE 分别平分∠ABC 和∠BCD
∴∠EBC=∠ABC,∠ECB=∠BCD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD=2,BC=AD,
∴∠ABC+∠BCD=180°,
∴∠EBC+∠ECB=90°,
∴∠BEC=90°,
∴BE2+CE2=BC2 ,
∵AD∥BC,
∴∠EBC=∠AEB,
∵BE平分∠ABC,
∴∠EBC=∠ABE,
∴∠AEB=∠ABE,
∴AB=AE=2,
同理可证 DE=DC=2,
∴DE+AE=AD=4,
∴BE2+CE2=BC2=AD2=16.
故答案为:16.
一十四.矩形的性质(共1小题)
15.(2020•包头)如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE.若∠ADB=30°,则tan∠DEC的值为 .
【解答】解:如图,过点C作CF⊥BD于点F,设CD=2a,
在△ABE与△CDF中,
,
∴△ABE≌△CDF(AAS),
∴AE=CF,BE=FD,
∵AE⊥BD,
∴∠ADB=∠BAE=30°,
∴AE=CF=a,BE=FD=a,
∵∠BAD=90°,∠ADB=30°,AE⊥BD,
∴∠BAE=∠ADB=30°,
∴BD=2AB=4a,
∴EF=4a﹣2a=2a,
∴tan∠DEC==,
故答案为:.
一十五.正方形的性质(共2小题)
16.(2021•包头)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,则∠BAF的度数为 22.5° .
【解答】解:如右图,连接AE,
∵BD为正方形ABCD的对角线,
∴∠BDC=45°,
∵DE=DC=AD,
∴∠DEC=∠DCE==67.5°,
∵∠DCB=90°,
∴∠BCE=90°﹣∠DCE=90°﹣67.5°=22.5°,
∵EF=EC,
∴∠FEC=180°﹣∠EFC﹣∠ECF=180°﹣22.5°﹣22.5°=135°,
∵∠BEC=180°﹣∠DEC=180°﹣67.5°=112.5°,
∴∠BEF=135°﹣112.5°=22.5°,
∵AD=DE,∠ADE=45°,
∴∠AED==67.5°,
∴∠BEF+∠AED=22.5°+67.5°=90°,
∴∠AEF=180°﹣90°=90°,
在△ADE和△EDC中,
,
∴△ADE≌△EDC(SAS),
∴AE=EC,
∴AE=EF,
即△AEF为等腰直角三角形,
∴∠AFE=45°,
∴∠AFB=∠AFE+∠BFE=45°+22.5°=67.5°,
∵∠ABF=90°,
∴∠BAF=90°﹣∠AFB=90°﹣67.5°=22.5°,
故答案为:22.5°.
17.(2020•包头)如图,在正方形ABCD中,E是对角线BD上一点,AE的延长线交CD于点F,连接CE.若∠BAE=56°,则∠CEF= 22 °.
【解答】解:∵正方形ABCD中,∠BAD=∠ADF=90°,∠BAE=56°,
∴∠DAF=34°,∠DFE=56°,
∵AD=CD,∠ADE=∠CDE,DE=DE,
∴△ADE≌△CDE(SAS),
∴∠DCE=∠DAF=34°,
∵∠DFE是△CEF的外角,
∴∠CEF=∠DFE﹣∠DCE=56°﹣34°=22°,
故答案为:22.
一十六.切线的性质(共1小题)
18.(2021•包头)如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD的周长为 24+6 .
【解答】解:连接OE,过点C作CF⊥AD交AD于点F,
∵四边形ABCD为平行四边形,
∴AB=CD,AD=BC,AD∥BC,
∴∠EOD+∠OEC=180°,
∵⊙O与BC相切于点E,
∴OE⊥BC,
∴∠OEC=90°
∴∠EOD=90°,
∵CF⊥AD,
∴∠CFO=90°,
∴四边形OECF为矩形,
∴FC=OE,
∵AD为直径,AD=12,
∴FC=OE=OD=AD=6,
∵OC=AB,CF⊥AD,
∴OF=OD=3,
在Rt△OFC中,由勾股定理得,
OC2=OF2+FC2=32+62=45,
∴AB=OC=3,
∴▱ABCD的周长为12+12+3+3=24+6,
故答案为:24+6.
一十七.弧长的计算(共1小题)
19.(2022•包头)如图,已知⊙O的半径为2,AB是⊙O的弦.若AB=2,则劣弧的长为 π .
【解答】解:∵⊙O的半径为2,
∴AO=BO=2,
∵AB=2,
∴AO2+BO2=22+22==AB2,
∴△AOB是等腰直角三角形,
∴∠AOB=90°,
∴的长==π.
故答案为:π.
一十八.相似三角形的判定与性质(共1小题)
20.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,过点B作BD⊥CB,垂足为B,且BD=3,连接CD,与AB相交于点M,过点M作MN⊥CB,垂足为N.若AC=2,则MN的长为 .
【解答】解:∵∠ACB=90°,BD⊥CB,MN⊥CB,
∴AC∥MN∥BD,∠CNM=∠CBD,
∴∠MAC=∠MBD,∠MCA=∠MDB=∠CMN,
∴△MAC∽△MBD,△CMN∽△CDB,
∴,,
∴,
∴,
∴MN=.
故答案为:.
一十九.加权平均数(共1小题)
21.(2022•包头)某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:
候选人
通识知识
专业知识
实践能力
甲
80
90
85
乙
80
85
90
根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是 甲 .(填“甲”或“乙”)
【解答】解:甲的测试成绩为:(80×2+90×5+85×3)÷(2+5+3)=86.5(分),
乙的测试成绩为:(80×2+85×5+90×3)÷(2+5+3)=85.5(分),
∵86.5>85.5,
∴甲将被录用.
故答案为:甲.
二十.方差(共1小题)
22.(2021•包头)某人5次射击命中的环数分别为5,10,7,x,10.若这组数据的中位数为8,则这组数据的方差为 3.6 .
【解答】解:根据题意,数据5,10,7,x,10的中位数为8,
则有x=8,
这组数据的平均数为(5+10+7+8+10)=8,
则这组数据的方差S2=[(5﹣8)2+(10﹣8)2+(7﹣8)2+(8﹣8)2+(10﹣8)2]=3.6,
故答案为:3.6.
二十一.列表法与树状图法(共1小题)
23.(2020•包头)一个不透明的盒子里放置三张完全相同的卡片,分别标有数字1,2,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为 .
【解答】解:用列表法表示所有可能出现的结果情况如下:
共有9种可能出现的结果,其中“第2张数字大于第1张数字”的有3种,
∴P(出现)==.
故答案为:.
相关试卷
这是一份内蒙古赤峰市三年(2020-2022)中考数学真题分类汇编-02填空题,共14页。试卷主要包含了一个电子跳蚤在数轴上做跳跃运动,分解因式等内容,欢迎下载使用。
这是一份广西贵港市三年(2020-2022)中考数学真题分类汇编-02填空题,共14页。试卷主要包含了计算,因式分解等内容,欢迎下载使用。
这是一份广西梧州三年(2020-2022)中考数学真题分类汇编-02填空题,共14页。试卷主要包含了﹣的相反数是 ,分解因式,计算,=0的根是 等内容,欢迎下载使用。